PSİKROMETRİ II – Bölüm 2 – Başlık 6 – Referanslar

6. REFERANSLAR

  1. ASHRAE Handbook of Fundamentals, 2013
  2. Psychrometrics, Theory and Practice, ASHRAE, 1996
  3. Understanding Psychrometrics, Donald P. Gatley, ASHRAE, 2013
  4. Handbook of Air Conditioning System Design, Carrier Co.,McGraw Hill 1965
  5. Trane Air Conditioning Manual, 1974
  6. Termodinamik, Y.A.Çengel, Michael A.Boles, McGraw-Hill/Literatür, 1996
  7. Isı ve Kütle Geçişinin temelleri, F.P.Incropera,D.P.DeWitt,Literatür Yay 2010
  8. Isıtma+Klima Tekniği, 97/98, Recknagel-Sprenger Schramek, TTMD 2003
  9. Psychrometric Chart Celebrates 100th Anniversary. D.P.Gatley, ASHRAE Journal 11, 2004
  10. Air Conditioning Psychrometrics, A. Bhatya, CED engineering.com
  11. Construction of Generalized Chart for Different Pressures, He-Sheng Ren
  12. Understanding Humidity and Calculating Humidity Parameters, B.Pragnell
  13. IAPWS, Industrial Formulation, 1997, 2007
  14. Engineering Thermodynamics, N.J.Morgan, H.N.Shapiro
  15. Steam Tables, Keenan & Keyes, Wiley, 1969
  16. Thermophysical Properties of Humid Air, M. Conde Engineering, Zurich, 2007

PSİKROMETRİ II – Bölüm 2 – Başlık 5 – Birim Dönüşümleri

5. BİRİM DÖNÜŞÜMLERİ

5.1 Birim dönüşümleri için çarpımlar

5.2. Birim dönüşümleri için çarpımlar 

5.2.1.Basınç

5.2.2. Kitle

5.2.3. Hacim

5.2.4. Enerji

5.2.5. Özgül Ağırlık

5.2.6. Özgül Hacim

5.2.7. Sıcaklık Dönüşümleri

 

PSİKROMETRİ II – Bölüm 2 – Başlık 4 – Semboller

4. SEMBOLLER

4.1. GENEL

OA= Dış hava, taze hava

RA= Oda havası, mahal havası

SA= Sevk olunan (klimatize)  hava

DP= Oda çiy noktası…………………..…………………………..oC

ADP=Cihaz çiy noktası……………………………………………oC

RSHR= Oda duyulur ısı oranı………………………………….( % veya 0,00<1)

ESHR= Sistem duyulur ısı oranı ……………………………..(% veya 0,00<1)

 

Cp = Özgül ısı, sabit basınçta…………………………………..kJ/kg.oC

d= Kalınlık………………………………………………………………m

F= Alan……………………………………………………………………m2

h = Özgül entalpi……………………………………..…………… kJ/kg

          hDA= Kuru havanın özgül entalpisi….…………… kJ/kg

          hWV= Su buharının özgül entalpi…………….…… kJ/kg

k= Toplam ısı geçirgenlik katsayısı…………………………kJ/(oC.m2)

l = uzunluk………………………………………………………………m

M= Moleküler ağırlık………………………………………………kg/kmol

m= Havanın kitlesel debisi………………………………………kg/hr

mwv= Birim kuru hava içindeki su buharının ağırlığı..kg

mda= Birim kuru hava……………………………………………….kg

Q = Isı yükü……………………………………………………………..kJ/hr

q=  Birim ısı yükü……………………………………………………kJ/(kg.hr)

R= Üniversal gaz sabiti………………………………………….. J/(kgmole.oK)

        Rda=Kuru havanın gaz sabiti……………………………. J/(kgda.oK)

        Rwv=Su buharının gaz sabiti……………………………  J/(kgwv.oK)

rH= Bağıl nem………………………………………………………. (%)

t = Sıcaklık. Celsius skalası…………………………………….oC

        tdb=Kuru termometre sıcaklığı……………………….oC

        Twb=Yaş termometre sıcaklığı………………………..oC

T= Sıcaklık. Kelvin skalası(Mutlak sıcaklık)…………..oK

V= Hava hacımsal debisi…………………………………………kg/hr

W,w= Mutlak nem……………………………………………………(kgWV/kgDA)

        wWB=Mutlak nem, doyma noktasında……………. (kgWV/kgDA)

        wACT=Mutlak nem, ölçülen…………………………….. (kgWV/kgDA)

x= Mol oranı

 

 4.2. GREK ALFABESİ

α = Hava film katsayısı……………………………………………kJ/(oC.m2)

        α  = Dış hava film katsayısı

        αdış= İç hava film katsayısı

Δ= fark(örneğin iki sıcaklık veya iki entalpi değeri arasında)

λ= Isı iletim katsayısı……………………………………………… kJ/(oC.m)

δ= Özgül ağırlık………………………………………………………(kg/m3)(1/ γ)

γ= Özgül hacım……………………………………………………….(m3/kg)

η= verim…………………………………………………………………(% veya 0,00<1)

 

 4.3. ALT SİMGELER

da= Kuru hava

H2= Hidrojen

O2= Oksijen

H20=Su

H20(buhar)= su buharı

w= Su

wv= su buharı

wvs=doyma noktasındaki su buharı

duy= duyulur ısı

giz = gizli ısı

f = sıvı (örneğin su)

g = gaz (örneğin su buharı)

fg= buharlaşma (sıvı halden gaz haline geçiş)

PSİKROMETRİ – I – Referanslar

Referanslar

1. ASHRAE Handbook of Fundamentals,

2. Psychrometrics, Theory and Practice, ASHRAE, 1996

3. Understanding Psychrometrics, Donald P. Gatley, ASHRAE, 2013

4. Handbook of Air Conditioning System Design, Carrier Co.,McGraw Hill 1965

5. Trane Air Conditioning Manual, 1974

6. Termodinamik, Y.A.Çengel, Michael A.Boles, McGraw-Hill/Literatür Yay, 1996

7. Isı ve Kütle Geçişinin temelleri, F.P.Incropera,D.P.DeWitt,Literatür Yay 2010

8. Isıtma+Klima Tekniği, 97/98, Recknagel-Sprenger Schramek, TTMD  2003

9. Psychrometric Chart Celebrates 100th Anniversary. D.P.Gatley, ASHRAE Journal 11, 2004

10. Air Conditioning Psychrometrics, A. Bhatya, CED engineering.com

11. Construction of Generalized Chart for Different Pressures, He-Sheng Ren

12. Understanding Humidity and Calculating Humidity Parameters, B.Pragnell

13. IAPWS, Industrial Formulation, 1997 007

14. Engineering Thermodynamics, N.J.Morgan, H.N.Shapiro

15. Steam Tables, Keenan & Keyes, Wiley 969

16. Thermophysical Properties of Humid Air, M. Conde Engineering, Zurich 2007

PSİKROMETRİ – I – Bölüm 3 – Başlık 7 – Örnekler

  1. ÖRNEKLER

 7.1.YÜZEY KONDANSASYONU ve ENGEL OLMAK  İÇİN GEREKLİ İZOLASYON KALINLIĞI.

 Nem oranı yüksek ve/veya dış hava sıcaklığı çok düşük yerlerde duvar ve pencerelerde yüzey kondansasyonu çok sık karşılaşılan bir sorundur. Buna mani olmak için bu satıhlara paralel sıcak hava üflenir. Bu uygulama bir çözümdür, ancak enerji sarf etmeden de bunun önlenmesi mümkündür. Bu da bir etüd gerektirir. Prosedürü şu şekilde özetleyebiliriz:

  • Önce mahal şartları dikkate alınarak oda çiy noktası“DP” psikrometrik diyagram üzerinden belirlenir.
  • Separasyonun (duvar, pencere, tavan vb.) satıh sıcaklığı hesap yoluyla bulunur. Bu sıcaklık oda çiy noktası “DP” ile karşılaştırılır. Eğer hesaplanan sıcaklık “DP”den düşükse satıh kondansasyonu oluşacaktır.
  • Bu durumda duvar ısı iletim katsayısı izolasyon malzemeleri de dikkate alınarak yenilenir. Yeni hesaba göre satıh sıcaklığı tekrar hesaplanır. Bulunan sıcaklık “DP”den büyükse çalışma başarılı olarak neticelenmiştir. Eğer değilse izolasyon kalınlığı arttırılarak veya cinsi değiştirilerek takrarlanır.

Bunu bir örnekle izah edelim.

Oda şartlarımız 26oC, %65 rH, dış hava şartlarımız da -12oC (örneğin Ankara) olan bir mahalde dış duvar kalınlığı 50mm sıvasız beton perdedir. Kondansasyon olup olmayacağını, eğer oluşuyorsa gerekli izolasyon kalınlığını hesaplayın:

Psikrometrik diyagramdan 26oC, %65 rH oda şartları için doyma noktası “DP” 19,3oCKT olarak bulunur.

İkinci olarak beton perde duvarın ısı iletim katsayısını hesaplayalım:

K=Isı iletim katsayısı (W/oK.m2)

α=İç hava film katsayısı (23,50 W/oK.m2)

αdış=Dış hava film katsayısı (8,15 W/oK.m2)

δ = duvar kalınlığı (0,05 m)

λ = ısı iletkenliği (0,80 W/m.oK)

Üçüncü olarak ısı denklemini kuralım. Denklem 1 metrekare yüzey alanı için yapıdığından denklem alan ölçüsü “F” bulunmayacaktır.

q1= k1(t-tdış)

q1= 1,64 x 38 =62,32 W/m2 

Dördüncü olarak iç sathın sıcaklığını hesaplamak için ısı eşitlik denklemini kuralım.

q2= k2(tsatıh-tdış)

 q1= q2

 k1(t-tdış)= k2(tsatıh-tdış)

 62,32= k2(tsatıh-tdış)

Beşinci olarak “k2” diye adlandırdığımız, iç hava filmini dikkate almayan ısı iletim katsayısını hesaplayalım

 

 Bulduğumuz bu değeri ısı eşitliği denklemindeki yerine koyarak satıh sıcaklığını bulalım.

k1(t-tdış)= k2(tsatıh-tdış)

62,32= 2,05 (tsatıh+12)

tsatıh= +18,4 < 19,3oC

Bulduğumuz bu sonuca göre satıhta terleme olacaktır. Terlemeye mani olmak için iç sathı poliüretanla izole edeceğimizi kabul edelim ve izolasyon kalınlığını hesaplayalım.

Bu formülde ,

δ = izolasyon kalınlığı (X m)

λ = ısı iletkenliği (0,03 W/m.oK)

k1(t-tdış)= k2(tsatıh-tdış)

k1(26+12)= k2(19,3+12)

38k1= 31,3k2

X= 0,0025m (30mm) izolasyon kalınlığı bulunur.

Aynı işlemi pencereler ve vitrin camlar için de yapabiliriz.

sıcaklığı sabittir. Üflenen hava miktarı mahallin maksimum yaz (soğutma) yüküne göre belirlenir. Minimum hava debisi IAQ’ya bağlı olarak mahallin minimum hava debisine, örneğin içerideki insan sayısı ile beher kişi için gerekli olan taze hava miktarının çarpımına eşittir.

İki değişik türde VAV uygulaması yapılmaktadır.

  • Yaz ve kış uygulamalarının tümünde değişken hava debisi

7.2. Değişik ve Sabit Sıcaklıklardaki Suyun Havaya püskürtülmesi.

Bölüm-5, konu 5.5.1’de havanın su ile nemlendririlmesi incelenmişti. Ku konuda dışarı ile ısı alış-verişi olmaması nedeniyle gerekli buharlaşma ısısının dahilden, yani su ve havadan karşılanacağı, bu adyabatik proses sonucu su sıcaklığının adyabatik doyma noktası sıcaklığına eşit olacağı, havanın adyabatik soğuma neticesi, verim oranında bu sıcaklığa yaklaşacağı anlatılmıştı. Bu uygulamalar, yukarıda da belirtildiği gibi dışarıdan herhangi bir ısı (sürekli ısıtma veya soğutma) ilavesi yapılmaması durumda geçerlidir. Ancak bu tam olarak ısı ilavesi durumunda doğru değildir. Havanın püskürtülen su sıcaklığına yaklaşacağı doğrudur, ancak proses artık bir adyabatik proses değildir. Bu konunun detaylı incelenmesi başka bir kitabın konusudur. Biz burada kısa bir bilgilendirmeyle yetineceğiz.

Bu işlemler iki değişik uygulama için aşağıda gösterilmiştir.

Bu uygulamalardan birincisi paralel yönlü uygulamadır. Buna örnek olarak hava yıkayıcılı klima santralarındaki paralel yönlü püskürtmeyi gösterebiliriz. Ancak bu uygulamanın tek farkı nemlendiriciye gelen suyun devamlı ısıtılması veya soğutulmasıdır.

Paralel yönlü nemlendirici aşağıda şematik olarak gösterilmektedir.

 

Diğer bir uygulama da ters yönlü akış prensibine göre yapılan uygulamalardır. Bu uygulamaların en tipik örneği dik tip su soğutma kuleleridir. Bunun psikrometrik diyagramını ve diyagramatik çizimini aşağıda görüyorsunuz.

Her iki diyagramda da mavi çizgiler soğutulmuş su ile, kırmızı çizgiler ise ısıtılmış su ile gerçekleştirilen prosesleri temsil etmektedir. Yeşil hat ise herhangi bir ısı ilavesi olmaksızın gerçekleştirilen adyabatik prosesi göstermektedir.

 

PSİKROMETRİ – I – Bölüm 2 – Başlık 6 – KLİMA UYGULAMALARININ PSİKROMETRİK OLARAK İNCELENMESİ

6. KLİMA UYGULAMALARININ PSİKROMETRİK OLARAK İNCELENMESİ

6.1. SOĞUTMA YÜKÜNE BAĞLI OLARAK HAVA DEBİSİNİN TAYİNİ

 Bir mahallin soğutma yükünü karşılamak için gerekli hava debisi o mahallin duyulur ısı kazancına bağlıdır. Bunun nedeni de duyulur ısı yükünün kuru termometre sıcaklığının değişimi ile karşılanmasından kaynaklanmaktadır. Bu nedenle mahal için gerekli hava debisi mahallin duyulur ısı kazancının üflenen sıcaklık fakı ile havanın sabit basınçtaki özgül ısısı ve özgül ağırılığının çarpımına bölünmesi ile elde edilir.

Bu işlemde:

Qduy= Mahallin duyulur ısı kazancı   (kJ/h)

ɤ    = havanın özgül hacmi  (m3/kg)

Δt   = Oda kuru termometre sıcaklığı ile üflenecek klimatize hava

Arasındaki sıcaklık farkı . Genelde 8oC ila 10oC alınır.

Cp    = havanın sabit basınçta özgül ısısı ( 1.00483 kJ/kg) (Havanın özgül ısısı ile ilgili hususlar Bölüm-1, konu 3.2’de geniş olarak anlatılmıştır.)

Bundan sonra yapılacak işlem psikrometrik diyagram üzerine “tRA”ve “tsa” değerlerini izotermler halinde işlemektir. İkinci işlem ise “RSHR”ye bağlı proses hattının çizilmesidir.

Sisteminiz %100 dış hava ile çalışacaksa “SA” konumu ile “OA” konumu bir doğru ile birleştirmek yeterlidir. Elde edeceğiniz doğru klima santralındaki soğutma prosesidir. Bu hattın eğimi “ESHR” ye eşittir ve hattın doyma eğirisini (%100 bağıl nem eğrisini) kestiği nokta da “ADP” olarak tanımlanan cihaz çiy noktasıdır.

Eğer sistem karışım havası ile çalışacaksa önce “RA” ile “OA” konumlarını düz bir çizgi ile birleştirip bu hat üzerinde karışım noktasını bulmanız gerekir. İkinci işlem ise bulunan bu “KA” noktasını “SA” ile birleştirmektir. Karışım havalı uygulamalardaki soğutma prosesi çizginiz bu olacaktır. Bu çizginin de doyma eğrisini kestiği nokta “ADP” noktanızdır. Bu noktayı soğutucu akışkan dönüş sıcaklığı olarak alabilirsiniz.

%100 dış havalı uygulama aşağıdaki psikrometrik diyagramda görülmektedir.

Bu uygulamada:

Qduy-oda= V.(1/ɤ)cp(tRA-tSA)
Qgiz-oda= V.(1/ɤ)(wRA-wSA).hfg
Qtop-oda= V.(1/ɤ)cp(tRA-tSA) + V.(1/ɤ)(wRA-wSA).hfg
RSHR= Qduy-oda/ Qtop-oda

Qduy-sist= V.(1/ɤ)(hOA-hSA)= V.(1/ɤ)cp(tOA-tSA)
Qgiz-sist= V.(1/ɤ)(wOA-wSA).hfg
Qtop-sist= V.(1/ɤ)cp(tOA-tSA) + V.(1/ɤ)(wOA-wSA).hfg
ESHR= Qduy-sist/ Qtop-sist

olmaktadır.

“ADP” sıcaklığı 11oC olduğu için tercih edilen soğutucu akışkan, istenen “ESHR” soğutma prosesi eğrisini sağlayabilmek için 5/11oC veya  6/11oC olmalıdır.

Aşağıdaki psikrometrik diyagramda da karışım havalı bir uygulama görülmektedir. Bu uygulama için aynı denklemlerle mahal ve sistem yüklerini bulabiliriz. Ancak sistem karışım havalı olduğu için sistem yükünün hesabında “OA”ların yerini “KA”lar alacaktır.

 Qduy-oda= V.(1/ɤ)(hRA-hSA)= V.(1/ɤ)cp(tRA-tSA)
Qgiz-oda= V.(1/ɤ)(wRA-wSA).hfg
Qtop-oda= V.(1/ɤ)cp(tRA-tSA) + V.(1/ɤ)(wRA-wSA).hfg
RSHR= Qduy-oda/ Qtop-oda

Qduy-sist= V.(1/ɤ)(hKA-hSA)= V.(1/ɤ)cp(tKA-tSA)
Qgiz-sist= V.(1/ɤ)(wKA-wSA).hfg
Qtop-sist= V.(1/ɤ)cp(tKA-tSA) + V.(1/ɤ)(wKA-wSA).hfg
ESHR= Qduy-sist/ Qtop-sist

ADP konumu 12oC olması nedeniyle seçilen soğuk su rejimi 7/12oC’dir.

Bu prosese uygun klima santralı aşağıda gösterilmektedir. Şemtik çizim üzerine, takip kolaylığı açısından psikrometrik prosesteki tanımlar da işlenmiştir.

6.2. KIŞ UYGULAMASI İÇİN HAVA DEBİSİ VE ISITMA YÜKLERİNİN TESPİTİ-1, NEMLENDİRMESİZ ve SU İLE NEMLENDİRMELİ ÖRNEKLER.

 Genelde kış uygulaması için gerekli hava debisi yaz klima yükü esas alınarak belirlenen hava debisine eşit alınır. Ancak daha yüksek üfleme sıcaklıklarının arzu edilmesi, veya dış hava yükünün fazla olması gibi  durumlarda enerji tasarrufu açısından değişik debili uygulamalara gidilebilir ve kış uygulamaları için daha düşük hava debileri seçilebilir. Bu tip uygulamaların çift devirli veya frekans konvertörlü vantilatör ve aspiratörlerin kullanılması suretiyle gerçekleştirilmesi mümkündür. Biz örneğimizde sabit hava debili bir klima santralı için psikrometrik prosesi belirlemeye çalışacağız.

Kış uygulamasında karşımıza çıkan en büyük sorun nemlendirmenin yapılıp yapılmayacağıdır. Nemlendirmeye olan ihtiyacı o mahaldeki gizli ısı kazançları belirler. Eğer gizli ısı kazançları neticesi %35’in üzerinde bir bağıl nem “rH” gerçekleştirilebiliyorsa ve özel bir gereksinim yoksa nemlendirme yapılmayabilir (Bkz. Konu 5.7. Oda Efekti) . Ancak %35’in altındaki bağıl nem oranlarının insanları rahatsız edeceği, ciltte ve burun mukozasında kurumalara neden olacağı için nemlendirme yapılmalıdır. Biz sistemlerimizde her ikisini de ele alacağız.

Yukarıdaki örneğimizde 510 harici havalı bir kış kliması uygulaması gösterilmektedir. Bu uygulamada “tOA-tRA” arası ısıtma işlemi dış havanın mahal şartlarına kadar ısıtılmasını, “tRA-tSA” arasındaki işlem ise mahallin ısı kaybını karşılamak için mahal şartlarına kadar ısıtılmış havanın “SA” şartına kadar aşırı ısıtılmasını içermektedir.

QDH= V.(1/ɤ)cp(tOA-tRA)………… dış havanın oda şartlarına kadar ısıtılması

QKış= V.(1/ɤ)cp(tRA-tSA)………… mahal ısı kaybı

∑QKış= QDH+ QKış…………………. Toplam ısıtma yükü

Bu uygulamada oda efekti neticesi istenen mahal şartları olan 22oCKT, %35 rH’ın elde edileceği,  dolayısıyla mahalde birim hava debisi için “WOA-WRAkadar gizli ısı kazancı olduğu varsayılmıştır.

Diğer bir uygulama da ısıtılan dış havanın mahal konfor şartını temin etmek amacıyla nemlendirilmesidir. Bu uygulamada mahalde gizli ısı kazancı olmadığı veya ihmal edilebilecek bir düzeyde olduğu varsayılmıştır.

Bu prosese uygun klima santralının şematik çizimi aşağıda gösterilmektedir.

Nemlendirme işlemi, konu 5.5’de anlatıldığı gibi iki şekilde yapılabilmektedir.

  • Su ile nemlendirme
  • Buhar ile nemlendirme

Biz bunlardan önce su ile nemlendirmeyi ele alacağız.

Sulu nemlendirme daha önceki bahislerde de bahsedildiği gibi hava yıkayıcı püskürtücülerle veya dolgu tipi (matt type) nemlendiricilerle yapılabilir. Bu iki uygulamanın psikrometrik prosesler açısından birbirinden farkı yoktur.

Su ile nemlendirmedeki en önemli özellik havanın içine pulverize su püskürtüldüğü taktirde mutlak nem oranının artmasına ilaveten adyabatik soğutmanın meydana gelmesidir. Isıtılmış havanın nemlendirme işlemi sonucu soğuması, havanın tekrar ısıtılmasını gerekli kılmaktadır. Bu da genelde ikinci bir ısıtıcı batarya gereksinimini ortaya çıkarmaktadır. Bu prosesi belirlerken en doğru yaklaşım oda şartları olan “RA” konumundan işe başlamak olacaktır. Son ısıtıcıda “SA” noktasına kadar ısıtma ve bilahare ısı kaybı nedeniyle mahalde soğuma oda şartları olan “RA” konumundan geçeceği için ilk yapacağımız işlem “RA”dan geçen bir doğru çizmektir. Bu doğru üzerinde “SA” noktasını mahal ısı kayıpları belirler. “2” konumu ise hava yıkayıcı ve nemlendiricinin verimi ile ilgilidir ve proje mühendisi tarafından belirlenir. Konu 5.5.1’de hava yıkayıcı ve nemlendiricilerin verimlerinin %70 ile %95 arsında olduğu belirtilmektedir. Bu nedenle verimi %85 almak doğru bir yaklaşım olur.

“2” noktasını bulduktan sonra bu noktaya ait sabit entalpi çizgisinin “OA” konumundan gelen yatay hat ile kesiştiği “1” noktası da hava yıkayıcı ve nemlendiriciye giriş şartlarıdır.

Bu psikrometrik diyagramda görülen OA-1 hattı dış havanın nemlendirmeye uygun koşula kadar ısıtılmasını içermektedir. 2-SA hattı ise adyabatik soğumaya tabi tutulmuş havanın Sa koşuluna kadar ısıtılmasını kapsamaktadır. Bu işlem içinde 2-RA arası havanın mahal şartına kadar ısıtılmasını, RA-SA arası ise mahal ısı kaybını karşılamak için daha da ısıtılmasını içermektedir. Bu prosesleri şu şekilde formülize edebiliriz.

QÖI= V.(1/ɤ)cp(t1-tOA)= V.(1/ɤ)(h1-hOA)…………Ön ısıtıcı
QSI= V.(1/ɤ)cp(tSA-t2)= V.(1/ɤ)(hSA-h2)…………..Son ısıtıcı

Mahal ısı kaybı ise aşağıdaki gibidir.

QSI= V.(1/ɤ)cp(tSA-tRA)= V.(1/ɤ)(hSA-hRA)………..Mahal ısı kaybı

Bu uygulamaya uygun bir klima santralı örneği aşağıda görülmektedir.

Bu uygulamayı, mahallin taze hava ihtiyacını dikkate alarak %100 dış havalı bir sistem yerine karışım havalı bir sistem olarak ta tasarlamak mümkündür. Psikrometrik diyagramdaki fark OA-RA karışımının ilavesinden ibaret olacaktır. Ancak karışım nedeniyle ısı yüklerinde, özellikle ön ısıtıcı yükünde önemli bir azalma meydana gelecektir.  Karışım havalı uygulamanın psikrometrik diyagramı ve santral şematik çizimi aşağıda yer almaktadır.

%100 dış havalı uygulama ile karşılaştırdığımızda hava karışımı neticesi ön ısıtıcının kapasitesinin önemli ölçüde azaldığını, ancak son ısıtıcı kapasitesinin değişmediğini görürüz. Havayı nemlendirmek için gereken su miktarında da %50 tasarruf sağlandığı görülmektedir.

6.3. KIŞ UYGULAMASI İÇİN HAVA DEBİSİ VE ISITMA YÜKLERİNİN TESPİTİ-2,

      BUHAR İLE NEMLENDİRMELİ ÖRNEKLER.

 Hava yıkayıcılı nemlendiricilerde bağıl nem oranının oransal kontrolu oldukça zordur. Bu nedenle bu proseslerde iki konumlu uygulamalar genellikle tercih edilmektedir. Çünkü nemlendirme proses hattı üzerinde “2” noktasını herhangi bir yerde sabitlemek ve kontrol altında tutmak oldukça zordur. Bu işlem yalnızca havaya püskürtülen suyun debisinin kontrolu ile yapılamaz. Pulverizasyon, damlacık tanelerinin büyüklükleri ve nozullardaki basınç bunu etkileyen unsurlardır. Bu nedenle sulu nemlendiricilerde elde edilebilecek maksimum verimle ulaşılabilecek “2” noktası hedeflenir ve bu noktanın kontrolu iki konumlu kontrol, örneğin santrifuj pompaya verilen “dur-kalk” komutu ile gerçekleştirilir. Aksi mümkün olsaydı “2” noktası ile “SA” noktası çakıştılmak suretiyle sistem basitleştirilebilir, son ısıtıcı elimine edilebilirdi.

Sulu nemlendiricilerin diğer bir handikapı havada adyabatik soğutmaya neden olmalarıdır. Bu nedenle son ısıtıların kullanımı gerekmektedir.

Üçüncü bir husus ta havaya püskürtülen pulverize suyun buharlaşması ve havaya karışması için belirli bir hacım ve hücre uzunluğuna ihtiyaç göstermeleridir. Bu uzunluk imalatçı firmalar arasında farklılık göstermekle birlikte 1500mm ile 2500mm arasında olduğunu söyleyebiliriz. Bu da klima santralının boyunu uzatmakta, daha büyük makina dairelerine gereksinim göstermektedir.

Buharlı nemlendiriciler bu handikapları gidermek üzere geliştirilmişlerdir. Buharlı nemlendiricilerin sağladıkları faydaları aşağıdaki gibi özetleyebiliriz.

  • Oransal olarak kontrol edilmeleri mümkündür. Havaya püskürtülen buhar miktarının oransal kontrolu ile bu işlem kolaylıkla gerçekleştirilmektedir.
  • Sulu nemlendiricilerde olduğu gibi uzun hücrelere gereksinim göstermezler, çok daha küçük hacimlerde çözülebilirler. Kanala monte edilebilirler.
  • Eğer uygulanan mahalde buhar, örneğin atık buhar mevcutsa enerji açısından son derece ekonomik çözüm getirirler.

%100 haricihavalı , buharlı nemlendiricili bir klima santralının psikrometrik diyagramı ile santralın şematik çizimi aşağıdadır.

Diyagramda da görüldüğü gibi OA-1 hattı dış havanın ısıtıcı bataryada ısıtılması işlemidir. 1-SA hattı ise buhar püskürtülmesi suretiyle mutlak nem oranının arttırılmasıdır. Konu 5.5.2’de buhar ile nemlendirme bahsi detaylı bir biçimde anlatılmıştır. Örneğimizde elektrodlu buhar jeneratörü kullanıldığı ve doymuş kuru buharın sıcaklığının 100oC olduğu kabul edilmiştir.100oC’taki doymuş kuru  özgül entalpisi 2675,57 kJ/kg’dır (Bkz. Tablo-1, Doymuş Haldeki Suyun termodinamik Özellikleri). Bu durumu psikrometrik diyagramın sol üst köşesindeki “Δh/ΔW” skalasına çizer ve bu çizgiyi paralel olarak “1” noktasına taşırız. Bu bizim nemlendirme prosesimizdir.

“SA” noktasında mahalle sevk olunan klimatize hava mahallin ısı kaybı nedeniyle “RA” şartına kadar soğuyacaktır. Bu prosesteki ısıtma ve nemlendirme işlemleri aşağıdaki gibidir.

QIsıt= V.(1/ɤ)cp(t1-tOA)= V.(1/ɤ)(h1-hOA)………… ısıtıcı

Wnem= V.(1/ɤ)(WRA-WOA)= …………………………..…nemlendirici

Bu miktar ön ısıtıcıdan çıkan havaya ilave edilen su buharı miktarıdır ve birimi “kg”dır. Bu işlem için gerekli enerji ise aşağıdaki gibidir.

Qnem= V.(1/ɤ)(WRA-WOA)hfg= V.(1/ɤ)(hSA-h1)….nemlendirici yükü

Bu işlemde “hfg” birim ağırlıktaki suyun buharlaşması için gerekli entalpidir. (100oC su için hfg=2256,47 kJ/kg).

Aynı uygulamayı karışım havalı bir klima santralı ile yaparsak psikrometrik diyagramımız ve klima santralımız aşağıdaki gibi oluşur.

Bu uygulamanın psikrometrik işlemleri bir önceki %100 dış havalı buharlı nemlendiricili klima santralının aynıdır. Aynı formüller kullanılabilir.

6.4. ISI GERİ KAZANIMI

6.4.1 Genel 

Reküperatör kullanılan ısı geri kazanım işlemlerini dört ana grupta toplayabiliriz.

  • Çift Serpantinli Isı Geri Kazanım Sistemleri
  • Isı Borulu Isı Geri Kazanım Sistemleri
  • Plakalı Eşanjörlü Isı Geri Kazanım İşlemleri
  • Döner Tamburlu Isı Geri Kazanım İşlemleri

Klima santralarının tasarımı açısından her dört uygulama birbirinden farklılık gösterse de psikrometrik açıdan birbirinin aynıdır. Temel ayırım ısı geri kazanım ünitelerinin ısı geri kazanım tarzlarındaki farklılıktır. Bu açıdan ısı geri kazanım ekipmanlarını iki kategoride toplayabiliriz.

  • Yalnız duyulur ısı bazında ısı geri kazanımı gerçekleştirenler
  • Entalpi bazında (toplam enerji) bazında ısı geri kazanımı gerçekleştirenler

Diğer bir sınıflandırma da ısı transfer tarzına göredir.

  • Direkt ısı transferi ile geri kazanım sağlayanlar
  • Üçüncü bir transfer elemanı (hidronik) kullananlar.

Yukarıdaki şematik çizimde her dört tip ısı geri kazanım uygulaması görülmektedir.

Çift serpantinli ısı geri kazanım sistemleri ile ısı borusu geri kazanım sistemleri ısı transferi için hidronik eleman kullanırlar. Bu eleman çift serpantinli sistemlerde su veya su-etilen glikol karışımıdır. Verimi düşük olan (%40 civarı) ve salt duyulur ısı bazında ısı geri kazanımı sağlayan bu sistemin en büyük avantajı vantilasyon ve aspirasyon ünitelerinin aynı mahalde bulunmaları mecburiyetinin olmamasıdır. Örneğin egzost ünitesi çatıda, klima santralı ise bodrum katta olabilir. Transfer boru donanımı ve sirkülasyon pompası vasıtasıyla gerçekleştirilir.

Isı borusunda ise direkt genleşmeye müsait soğutucu akışkandır; en geniş kullanımı olan R-134’dür. Pomapaya gerek göstermeyen, soğutucu akışkanın dansitesinde buharlaşmaya bağlı olarak meydana gelen değişiklikler nedeni sirkülasyonu kendi içinde sağlar. Verim olarak çift serpantinli sistemlere benzerlik gösterirler.

Plakalı eşanjörlerde metal veya LiBr solüsyonu emdirilmiş selülozik elemanlar egzozt ve dış hava arasındaki bölmeyi oluşturur, bu bölme üzerinden ısı iletimi sağlanır. Bu nedenle plakalı ısı geri kazanım eşanjörleri kararlı rejim çalışması olarak kabul edilirler. Plakaları aluminyum veya benzeri metallerden oluşan eşanjörler salt duyulur ısı transferi yapar ve (oC) bazında ısı geri kazanımı sağlar. Selüloz, örneğin LiBr veya benzeri sıvı emdirilmiş kağıt  elemanları olanlar duyulur ve gizli ısı transferi yaparlar. Bu eşanjörlere entalpi bazlı ısı geri kazanım eşanjörleri tabir edilir. Plakalı eşanjörlerin verimleri tasarımına bağlı olarak %40 ila %85 arası değişmektedir. Bir plakalı eşanjör aşağıda görülmektedir.

Döner tamburlu eşanjörler salt metal veya satıh kaplamalı metal dolgu malzemesine sahiptirler. Bulundukları klima santralları içinde 80 ila 100 d/dak hızla dönerler. Dönme işlemi küçük bir elektrik motoru vasıtasıyla gerçekleştirilir. Egzost havası tarafındaki tekerleğin yarısı egzost havasının sıcaklığı nedeniyle ısınır ve dönme hareketi neticesi bu havayı soğuk olan dış havaya taşır (yaz aylarında bu işlemin tersi olur). Bu nedenle döner tamburlu ısı geri kazanım eşanjörlerinin çalışma tarzı kararsız rejim olarak kabul edilir. Döner tamburlu eşanjörler üç değişik şekilde imal edilmektedirler:

  1. Salt metal (aluminyum) dolgu malzemeli olanlar : Bu modeller yalnız duyulur ısı tarnsferinde kullanılırlar. Dönme işlemi neticesi cüzi bir miktar nemli havayı da sürükleseler gizli ısı transferi açısından bu husus kabili ihmaldir. Oldukça yüksek duyulur ısı geri kazancı verimine sahiptirler ((%70 ve üzeri).
  2. Satıhları oksitlenmiş aluminyum dolgu malzemeli olanlar:Bu modellere antalpi tekerleği de tabir edilir. Aluminyum dolgu malzemeleri özel banyolarda oksitlendirilip belirli bir mikron kalınlığında oksit tabakasına sahip olurlar. Bu eşanjörlerin yüksek duyulur ısı geri kazanım verimlerine (%70 ve üzeri) karşılık gizli ısı geri kazanım verimleri oldukça düşüktür (%40 civarı).
  3. Dolgu malzemesinin satıhları silika jel kaplı olanlar:Bu modellere absorbsiyon tekerleği de denir. Aluminyum dolgu malzemelerinin sathı özel işlemlerle pulverize silika jel ile kaplanmıştır. Yüksek duyulur ve gizli ısı geri kazanım verimlerine sahiptirler (%70 ve üzeri).

  

6.4.1. Duyulur Isı Bazında Isı Geri Kazanım:

Duyulur ısı bazında ısı geri kazanım işleminde dış hava ile oda havasının mutlak nem oranları eşnjördeki proses nedeniyle değişmemekte, aynı kalmaktadır. Bu proseste, ısı alış-verişi sonucu oluşan sıcaklıkların nasıl hesaplanacağı  TS EN 308’de belirtilmiştir.

Bu formülde:

η= Eşanjör ısı kazanım verimi ………………………………..…. (%)
tRA=Egzost edilen havanın sıcaklığı ……………………………. (oC)
tOA=Dış havanın sıcaklığı ………………………………………..…. (oC)
t1=Egzost edilen havanın eşanjörden çıkış sıcaklığı ……. (oC)

Bu işlemi psikrometrik diyagramda şu şekilde gösterebiliriz:

Bu prosesle ilgili olarak şu denklemleri kurabiliriz:

 Q1=Q2
Q1= V(1/ɤ)Cp(tRA-t1)= V(1/ɤ)(hRA-h1)
Q2= V(1/ɤ)Cp(t2-tOA)= V(1/ɤ)(h2-hOA)

Bu denklemlerde egzost ve dış hava debilerinin eşit olduğu varsayılmıştır. Debilerin farklı olması durumunda aynı denklemler “V” değerlerinin eşit olmayan değerlerle değiştirilmesi sonucu elde edilir.

Yukarıdaki örnekte ısı geri kazanım veriminin %55 alınması nedeniyle soğuyan oda havasının oda doyma noktası olan “DP”ye varmadığı görülmektedir. Eğer verim daha yüksek olsaydı ve bunun neticesi hesaplanan “t1” sıcakığı doyma eğrisinin dışında çıksaydı bu durumda entalpi eşitlikleri ile prosesi belirlemek gerekecekti. Bu durumu verimi %80 olan bir ısı geri kazanım eşanjörü ile gösterelim.

 Bir önceki sayfada vermiş olduğumuz verim denklemini %80 için yaptığımızda hayali “tx” noktasını +2oC olarak buluruz. Ancak bu sıcaklık doyma eğrisinin üstünde olduğu için mümkün değildir. Ancak bu sıcakılığın özgül entalpisi denklemde kullanılabilir.

Q1=Q2
Q1= = V(1/ɤ)(hRA-h1)        ( hx=h1)
Q2= V(1/ɤ)Cp(t2-tOA)= V(1/ɤ)(h2-hOA)

Bu işlemde egzost edilen hava “DP” sıcaklığından daha düşük bir sıcaklığa soğutulduğu için yoğuşma meydana gelmektedir. Eğer “1” noktası 0oC’ın altında olsaydı bu sefer karlanma ve buzlanma yoğuşmanın yerini alacaktı.

Yoğuşma ve karlanma olan plakalı ısı geri kazanım eşanjörlerinin egzost tarafında bir yoğuşma kabı bulunması gereklidir. Eğer karlanma olayı varsa defrost tertibatı bulunmalıdır. Bu husus konumuz dışı olduğundan detayına girilmeyecektir; imalatçı firmalarla temasa geçilmesi tavsiye olunur.

6.4.2. Toplam Isı (Entalpi) Bazında Geri Kazanım:

 Toplam ısı bazında ısı geri kazanımı hem duyulur ısı bazında “oC” olarak, hem de gizli ısı bazında “W” olarak ısı geri kazanımını, diğer bir ifadeyle hem ısı hem de kitle transferini içermektedir. Bu nedenle iki değişik verim değerinin belirtilmesinde yarar vardır. Bunlardan biri duyulur ısı geri kazanım verimi, diğeri de gizli ısı geri kazanım verimidir.

Bu işlemi psikrometrik diyagrama aktarabilmemiz için “t1” ve “t2” değerlerine ilaveten “W1” ve “W2” değerlerini de bulmamız gerekmektedir. Burada yapacağımız işlemi şu şekilde özetliyebiliriz:

  1. Duyulur ısı bazında ısı geri kazanımı verimi “ηt“yi esas alarak “t1” egzost havası eşanjör çıkış sıcaklığını belirleyin. Bu noktanın kuru termometre koordinatından sabit kuru termometre çizgisini çizin (diyagramda “t1” noktasından yukarı doğru uzanan yeşil çizgi).
  2. Isı denklemini kurup dış havanın eşanjörden ısınmış olarak çıkacağı “t2” noktasını belirleyin. Bu noktanın kuru termometre koordinatından da aynı şekilde sabit kuru termometre çizgisini çizin (diyagramda “t1” noktasından yukarı doğru uzanan yeşil çizgi).
  3. Psikrometrik diyagramdan “WRA” ve “WOA” değerlerini bulun.
  4. “ηw“ verim değerini esas alarak diyagramdan “W1” ve “W2” değerlerini hesaplayın. Her iki değer için mutlak nem oranı ordinatına dik iki sabit mutlak nem çizgisini çizin (Bizim örneğimizde verim %50 olduğu için her iki hat üst üste çakışacaktır).
  5. “W1” yatay hattı ile “t1” dikmesinin kesiştiği nokta “1” konumudur.
  6. “W2” yatay hattı ile “t2” dikmesinin kesiştiği nokta “2” konumudur.
  7. RA-1hattı eşanjörde egzost havasının soğuma hattıdır. Aynı şekilde OA-2 hattı da ısı geri kazanımı ile dış havanın ısınma ve nem kazanma hattıdır.

Aşağıdaki psikrometrik diyagramda mahal şartları 22oC, %50 rH, dış hava şartları -3oC, %30 rH  ve eşanjör verimleri ηt=%75, ηw=%50 olan bir uygulama örneği verilmektedir.

  

6.5. ISI GERİ KAZANIMLI KLİMA SANTRALI ÖRNEKLERİ

6.5.1.  Kış Uygulaması

Kış kliması örneğimizde antalpi bazlı ısı geri kazanım tamburu olan, karışım havalı ve buharlı nemlendiricili bir klima santralını inceleyeceğiz.

Klima santralımız dört mevsim çalışmak üzere dizayn edildiği için bünyesinde soğutucu batarya da bulundurmaktadır. Önce kış klima uygulamasını inceleyeceğiz, bilahare yaz klimasını göreceğiz.

Isı geri kazanım işlemi 6.4.3’deki örneğin aynıdır. Ancak egzost ettğimiz hava psikrometrik proses açısından bizi ilgilendirmediğinden kesin çizgilerle gösterilmiştir. OA-2 dış havanın döner tamburlu ısı geri kazanım cihazında ısı ve mutlak nem kazanmasını göstermektedir. “2” konumundaki hava, döner tamburlu eşanjörden geçmeyen %50 oranındaki mahal havası ile karışmaktadır. Bu proses 2-RA hattı olup karışım noktası “KA” ile gösterilmiştir. KA-3 hattı ise ısıtıcı bataryada karışım havasının ısıtılması hattıdır. “3” noktasındaki havanın beher kligramına “Wra-Wka” kadar buhar ilavesi ile nemlendirme yapılmaktadır. “SA” noktası ise klimatize havanın mahalle sevk olunduğu konumdur.

Bu uygulamada entalpi bazlı ısı geri kazanım tamburunun kullanımının getirdiği avantajlar açıkça görülmektedir. Örneğin KA-3 ısıtma proses çizgisi kısalmıştır. Eğer ısı geri kazanımı olmasaydı karışım işlemi OA-RA hattı üzerinde yapılacak ve ısıtma bataryası da bunun neticesi olarak daha büyük çıkacaktı. Keza aynı mantığı nemlendirme prosesi için de yürütmek mümkündür. “KA” noktasının daha solda ve aşağıda bir konumda olması gerekli buhar miktarında da artışa neden olacak, neticede daha büyük bir buharlı nemlendirici kullanılacaktı. Bu da bize işletme maliyeti açısından büyük avantajlar sağlamaktadır.

6.5.1. Yaz Uygulaması

  Yukarıdaki psikrometrik diyagramımızda 550 karışım havalı bir yaz uygulaması görülmektedir. Veriler aşağıdaki gibidir.

ηduy= %75……………………  Duyulur ısı verimi

ηgiz= %50………………….  Gizli ısı verimi

Dış hava oranı = %50

Oda şartları:

26oCKT, %50rH,    RSHR=0,82

Bu diyagramda “OA-2” hattı dış havanın döner tamburdan geçerken soğuması ve mutlak neminin belirli bir miktarını bırakmasını, “SA-1” hattı da egzost edilen mahal havasının ısınırken dış havadan transfer edilen nemi bünyesine almasını göstermektedir. Ancak egzost havası bu aşamada bizleri ilgilendirmediği için yalnız malumat kabilinden kesik çizgiler halinde gösterilmiştir. Bir antalpi bazında ısı geri kazanımı aparatından hava çıkış şartlarının hesabı 6.4.3.’de gösterilmiştir.

“2-RA” hattı oda havası ile döner tamburlu ısı geri kazanım cihazından çıkan havanın karışım prosesinin meydana geleceği hattır ve “KA” noktası karışım noktasıdır.

“RA-SA” ESHR’ye eşit olup oda efekti neticesi havanın mahalde ısınması işlemini göstermektedir. Havanın 10oC sıcaklık farkı ile üfleneceği kabul edildiğinden “KA-SA-ADP” hattı da klima santralı soğutma bataryasındaki soğutma prosesidir. Daha önceki bahislerde anlatıldığı gibi ADP kuru termometre sıcaklığı soğutucu su çıkış sıcaklığına eşit alınırsa, soğutucu bataryada sirküle eden soğutulmuş su 7/12oC bulunur.

6.6. DEĞİŞKEN HAVA DEBİLİ SİSTEMLER

 Değişken hava debili sistemlerde iki temel uygulama tipi vardır.

  1. Yaz ve kış uygulamasında değişken hava
  2. Yaz uygulamasında değişken hava, kış uygulamasında miminum debide sabit hava.

VAV terminal üniteli sistemlerin en büyük özelliklerinden biri mahallin sıcaklığının kontrolunu üflenen havanın sıcaklığını ayarlayarak yapmak yerine sabit sıcaklıkta ve değişken debide hava sevk etmesidir. VAV ismi de buradan kaynaklanmaktadır, “Değişken Hava Debili” tabirinin İngilizcesinin baş harflerinden oluşmaktadır.  Bu sistemde maksimum debi mahallin maksimum yaz yüküne göre, minimum debi de IAQ’ya bağlı olarak mahaldeki insan sayısına göre belirlenir. Mahal sıcaklık değişimine bağlı olarak hava debisi oransal olarak regüle edilir. Bu uygulama yaz-kış uygulanabileceği gibi (Bkz üstteki diyagram sol çizim) enerji ekonomisi açısından yaz uygulamasında değişken hava debisi, kış uygulamasında ise minimumda sabit hava debisi uygulaması da yapılabilir (Bkz. Sağ çizim). Kış çalışmasında minimum debi uygulaması yapılıyorsa klima santralı hava çıkışı miminum sıcaklıkta, örneğin 16oC’ta sabit tutulur, mahallin bakiye ısı ihtiyacı VAV terminal ünitesinin hava çıkış tarafına yerleştirilen bir ısıtıcı batarya ile gerçekleştirilir.

VAV terminal ünitelerinin diğer bir özelliği de değişen basınç farkları, örneğin giriş basınçları karşısında sabit debi uygulamsını yapabilmesidir. Özellikle HEPA filtreli uygulamalarda faydalanılan bu özellik konumuz dışı olduğundan yalnızca bilgi vermekle yetinilecektir.

Aşağıdaki psikrometrik diyagramda VAV terminal üniteli, değişken hava debili sistemlerin yaz-kış uygulamaları gösterilmektedir.

Diyagramda kırmızı çizgiler yaz uygulamasını, mavi çizgiler de kış uygulamalarını göstermektedir. Her iki uygulama için 5100 dış hava kabul edilmiştir. Yaz uygulamasında “OA” şartlarındaki hava klima santralında “SA” şartlarına kadar soğutulmakta ve mahalle sevk olunmaktadır. “SA-RA” hattı mahalde oda efekti neticesi duyulur ve gizli ısı kazancını göstermektedir. Bu uygulamada “SA” konumu daima sabittir. (Dış hava şartlarındaki değişikliklerin bu konum üzerindeki etkisi  tolere edilebilecek sınırlar içindedir). Mahal ihtiyaçlarına bağlı olarak üflenen havanın debisi oransal olarak kontrol edilmekte, azaltılmakta veya çoğaltılmaktadır.

Kış uygulamasında ise iki alternatif mevcuttur.

  1. Değişken hava debili uygulama
  2. Sabit hava debili ve son ısıtıcılı uygulama

Değişken hava debili uygulamada dış hava klima santralında “OA” konumundan “2” konumuna kadar ısıtılmaktadır. Bilahare buharla nemlendirilen hava “SA konumunda mahalle sevk olunmaktadır. “SA-RA” hattı ise mahalde ısı kaybı neticesi soğumayı göstermektedir. Bu proseste üflenen havanın sıcaklığı sabittir. Mahal ısısı yaz uygulamasında olduğu gibi debinin oransal reglajı ile sağlanmaktadır. Nemlendirici kullanıldığı taktirde bağıl neme bağlı olarak oransal kontrol yapılabilir.

Sabit hava debili kış uygulamasında ise hava belirlenmiş olan minimum debide sabit debili olarak üflenmektedir. Klima santralındaki ısıtma işlemi “OA-2” prosesi olup sıcaklık  sabittir. “2-3” arasında nemlendirme prosesine tabi tutulan hava VAV terminal ünitesindeki son ısıtıcı serpantine girmektedir. Burada hava “3-SA” prosesi ile ısıtılmakta ve mahalle sevk olunmaktadır. Mahal sıcaklığını sabit tutabilmek için, hava debisi sabit olduğundan “SA” üfleme sıcaklığı mahal yüküne bağlı olarak oransal kontrol edilmektedir.

6.7. ENDÜKSİYON SİSTEMLERİ 

Endüksiyon cihazları klima santralında şartlandırılmış primer havanın bir cihaz içindeki nozullardan yüksek hızla üflenmesi, yüksek hız ile yaratılan kısmi vakum sayesinde sekonder hava olarak tabir edeceğimiz mahal havasının cihazdaki serpantin üzerinden endüklenmesi ve soğutulması esasına dayanır. Primer ve sekonder hava cihaz içinde karışıp mahalle sevk olunurlar.

Yukarıdaki resimde bir endüksiyon cihazı ve çalışma prensibi görülmektedir. Endüksiyon cihazının psikrometrik analizine geçmeden önce cihazın çalışma prensibini bilmekte fayda vardır.

Endüksiyon cihazının içinde primer havanın girdiği bir plenum hücre vardır. Bu plenum hücrenin üst tarafında nozıllar bulunmaktadır. Bu nozıllar vasıtasıyla primer hava ısıtma-soğutma serpantinine paralel bir şekilde ve yüksek hızda üflenmektedir. Bu sayede serpantinin arka tarafında kısmi vakum yaratılmakta ve basınç farkı nedeniyle sekonder hava tabir ettiğimiz oda havası serpantin üzerinden cihaz içine emilmekte, diğer bir tabirle endüklenmektedir. Serpantin arkasındaki haznede primer ve sekonder havalar karışmakta, klimatize edilmiş hava olarak mahalle sevk olunmaktadır. Burada iki değişik proses ve bunların neticesi iki değişik hava kütlesinin karışması meydana gelmektedir. Primer hava önceden belirlenmiş şartlarda merkezi klima santralında klimatize edilmekte ve cihaza sevk olunmaktadır. Mahal şartlarındaki sekonder hava ısıtma-soğutma serpantini üzerinden geçerek soğumaktadır. Bu iki hava birbiriyle karışmakta ve mahalle sevk olunmaktadır.

Yukarıdaki proseste iki değişik işlem yer almaktadır. Dış hava klima santralında “3” koşuluna kadar şartlandırılıp primer hava olarak endüksiyon cihazına sevk olunmakta ve nozıllardan püskürtülmektedir. Mahal havası “RA” da “4” şartlarına kadar endüksiyon cihazı içinde şartlandırılmaktadır. Soğutucu olarak her iki sistemde de aynı akışkan kullanıldığından sistemlerin ADP’leri birbirlerine çok yakındır ve bu nedenle “3” ve “4” noktaları çakışmakta aynı zamanda mahalle sevk olunan karışım havası şartlarını oluşturmaktadır. Bu çalışmada “RA”nın mutlak nem oranı “4” şartının  nem oranından fazla olduğu için endüklenen havayı soğutan serpantin üzerinde kondansasyon meydana gelmektedir. Bu kondansasyon serpantin altındaki terleme tavasınca toplanıp drene edilmektedir.

Benzeri bir uygulama da endüksiyon ünitesindeki soğutma serpantini üzerinde yoğuşma olmaksızın, mahal havası “RA”yı yalnız duyulur olarak soğutmaktır. Bu işlem aşağıdaki psikrometrik diyagramda gösterilmektedir.

Bu tarzda çalışan cihazlara “aktif soğutmalı tavan” veya “aktif soğutmalı ünite” tabir edilmektedir. Endüksiyon cihazlarına çok benzeyen bu ünitelerin içinde drenaj tertibatı yoktur. Bu cihazdaki işlemi psikrometrik açıdan şu şekilde izah edebiliriz.

“OA” şartlarındaki primer hava “1” şartına kadar soğutulmaktadır. Kullanılan soğutucu akışkan 6/10oC soğuk su olduğu için “ADP” noktası da 10oC olarak çıkmaktadır. Endüklenen oda havası (sekonder hava) “2” şartlarına kadar soğutulmaktadır. Bu serpantinde kullanılan su sıcaklık kontrollü olup dönüş sıcaklığı “DP”ye eşit alınmakta, ayrıca serpantin satıh sıcaklığı ölçümü yapılarak soğuk su debisi ve dönüş sıcaklığı kontrol altında tutulmaktadır. Serpnatinden “2” şartlarında çıkan sekonder hava ile nozıllardan üflenen “1” şartlarındaki hava “SA” şartlarında karışmakta ve mahalle üflenmektedir. Bu uygulamanın en büyük özelliği sekonder havada yalnız duyulur soğutma yapılmasına rağmen primer hava sayesinde mahal bağıl nem şartları kontrol altında tutulabilmektedir. Bu uygulamada kullanılan primer-sekonder hava karışım oranları ile elde edilebilecek minimum RSHR imalatçılara bağlı olmakla birlikte yaklaşık olarak miminum RSHR değerinin %80, karışım oranının da 1/3 primer hava 2/3 sekonder hava olduğunu söyleyebiliriz. Hassas değerler için imalatçı firmaların kataloglarına bakılmalıdır.

6.8.1. HAVANIN NEMİNİN ALINMASI

6.8.1.Soğutma İle Nem Alma

Soğutma ile nem alma işlemi nemli havanın  çiy noktası “DP”den daha düşük bir sıcaklığı soğutulmasını ve bilahare mahal şartlarına kadar ısıtılması prosesini içerir. Bilinen en klasik nem alma sistemidir.

Bu işlemi ve gerekli hava debisinin belirlenmesini şu şekilde ifade edebiliriz.

Mw= Alınması gereken nem miktarı (kg/h)

Mahal şartları “RA” için hRA, tRA, wRA

Seçilen soğutucu akışkan, R407C,

Tevap=+5oC,

ΔTsuperheat=5oC

Bu verilerle ADP=+10oC bulunur. Soğutma prosesi eğrimiz “RA-ADP”dir.

By-pass oranını kabulle “2” noktası bulunur.

Hava debisi:

Buradan da gerekli soğutma kapasitesini bulabiliriz.

Mahal şartlarına kadar ısıtmak için gerekli olan ısıtma kapasite de:

Soğutma ile nem alma sistemlerinde soğutucu batarya üzerinde homojen bir ısı dağılımı gerçekleştireceği için doğrudan genleşmeli sistemler tercih edilmelidir. 

6.8.2. Adsorbsiyonlu Nem Alma Sistemleri

Soğutma ile nem alma uygulamalarında  mutlak nem oranının azaltılması ADP ile sınırlıdır. Teorik olarak ADP’yi daha aşağılara çekmek soğutucu bataryada kullanılan direkt genleşmeli gazın evaporasyon sıcaklığını düşürmek ile mümkün olacak gibi görünse dahi pratikte bu mümkün değildir. Çünkü evaporasyon sıcaklığının aşırı düşürülmesi, örneğin 0oC’ın altındaki değerlere çekilmesi batarya yüzeylerinde karlanmaya neden olacak, nem alma randımanını düşürecektir. Defrost yapılsa dahi kesintili çalışma olacağı için verimde yine düşmeler olacaktır. Evaporasyon sıcaklığının 0oC’ın biraz üzerinde, örneğin +2oC gibi bir seviyede tutulması da bu mahsuru gidermemektedir. Çünkü kısmi kapasite kullanımlarında da evaporasyon sıcaklığı azalacak ve karlanma olayı yine meydana gelecektir. Kademeli kapasite kullanımlı ve frekans konvertörlü kompresörlerle bunun önüne kısmen geçilse dahi 0oC evaporasyon bu uygulamanın alt limiti olacaktır. 4oC aşırı ısınma (superheat) sıcaklığı kabul edilse dahi ADP’yi bu derecenin altına çekmek mümkün olmamaktadır. Evaporasyon sıcaklığının düşmesi komprsörlerde kapasite azalmasına da neden olmakta, daha büyük kompresörlerin seçilmesi gerekmektedir.

Bu negatif hususların önüne geçmek için adsorbsiyonlu nem alma sistemleri geliştirilmiştir. Adsorbsiyonun anlamı taşınım yoluyla nem tutmadır. Bu işlem için “dessicant” tabir edilen özel tamburlar kullanılmaktadır. Isı geri kazanım sistemlerinde kullanılan tamburlara son derece benzeyen bu tamburların ana maddesi aluminyum yerine silika-jel’dir. Tamburlar fibrocam dokudan yapılmakta, bu dokunun üstü silika-jel kaplanmaktadır. Silika-jel tamburun %80’ini oluşturmaktadır. Ayrıca üzerinde koruyucu olarak akrilik bir kaplama da bulunmaktadır.

Silika-jel kaplı “Dessicant” tambur  (Pro-flute firması müsaadesiyle)

Bu uygulamada genelde tamburun ¾’ü hava kurutmada, 1/4’ü de tamburun adsorbe etmiş olduğu nemin dışarı atılmasında kullanılır.Adsorbsiyonlu nem alma santralı aşağıda şematik olarak gösterilmektedir.

Bu uygulamada “PA” rumuzlu proses havası, nemi azaltılmak istenen mahal havasıdır. “RA” ise yaklaşık 120oC’a ısıtılmış reaksiyon havası tabir edilen kurutucu havadır. Bu uygulamada döner tambur çok düşük bir devirle dönmektedir (yaklaşık 20 tur/saat). “PA”da bulunan nem 3 numaralı tambur tarafından adsorbe edilmekte ve nemi azalmış hava “DA” 4 numaralı vantilatör tarafından mahalle üflenmektedir. “PA” tamburun ¾’ünden geçmektedir. “RA” filtrelendikten sonra 120oC’a ısıtılmakta, tamburun bakiye ¼’lük kısmından geçerek tamburun kurutulmasını sağlamaktadır. Tamburun devamlı bir dönme hareketi içinde olması “PA”daki nemin alınmasına ve bu tamburun sıcak “RA” ile teması neticesi kurumasına ve işlemine devam devam etmesine neden olmaktadır. Bu işlem aşağıdaki psikrometrik diyagramda görülmektedir.

Bu proseste “RA” reaktif hava olarak mahal havası kullanılmakta, bu uygulama ile mahallin havalandırılması da sağlanmaktadır.

Çok düşük mutlak nem oranı istenen uygulamalarda çift tambur veya mekanik soğutma ile birlikte adsorbsiyonlu nem alma uygulaması da yapılmaktadır. Bu tip bir santralın şematik çizimi ve psikrometrik diyagramı aşağıdadır. Bu işlemde mahal havası “PA” önce soğutulmakta ve bu surette mutlak nem oranı azaltılmaktadır. Bilahare adrosbsiyonlu nem alma tamburundan geçen havanın nemi daha da azaltılmaktadır. Bu prosesler psikrometrik diyagramda ab, bc , ae ve ef çizgileriyle gösterilmektedir. cd prosesi isehavanın mahal şartlarına kadar ısıtlmasını içerme olup zorunlu bir işlem değildir. Ancak mahalde ısı kazançları yoksa “DA” sevk havasının sevk olunmadan önce mahal şartlarına veya mahallin ısı kaybını karşılayacak düzeye ısıtılması amacıyla düşünülebilir.

PSİKROMETRİ II – ÖNSÖZ

Bu kitap daha önce yayınlanmış olan “Psikrometri-I” isimli kitabın devamı mahiyetindedir. İlk kitabımızda üç bölüm halinde psikrometrinin tarihçesi, teorisi anlatılmış, uygulama ile örnekler verilmişti. “Psikrometri-II” olarak isimlendirdiğimiz bu kitabımızda ise temel uygulamalar ele alınmış, en basit bir ısıtma prosesinden karmaşık klima proseslerine kadar birçok örnek sayısal olarak verilmiş ve çözümleri siz okuyucularımızın bilgilerine sunulmuştur.

Bu kitabımızda hedef kitle olarak ısıtma-havalandırma ve klima konusunda uğraş veren meslektaşlarımızla aynı konuda mezuniyet projeleri ile yüksek mühendislik tezlerini yapmakta olan üniversite ve yüksek okul öğrencileri hedef alınmıştır.

Psikrometri-I” isimli kitapta, iki diyagramın, Carrier’in geliştirdiği ve ASHRAE tarafından güncelleştirilen “psikrometrik diyagram” ile Mollier tarafından geliştirilen “i-x” diyagramının yaygın olarak kullanıldığından bahsedilmektedir. Ülkemizde yaygın olarak “psikrometrik diyagram” kullanıldığından bu kitabımızdaki tüm problem ve çözümleri bu diyagram esas alınarak sunulmaktadır. Bunun sağladığı diğer bir avantaj da ilk kitabın 3.Bölüm, 8.Konu’da yer alan tabloların ve diyagramların kullanılabilme kolaylığıdır. Bu özellikten faydalanarak bazı örnekler iki değişik irtifa için yapılmış ve aradaki farkı inceleyebilme açısından bilgi ve görüşlerinize sunulmuştur.

Tüm okuyanlara faydalı olacağını ümidiyle saygılarımı sunar, tenkit ve taleplerinizi aşağıdaki e-mail adresime iletmenizi rica ederim.

 

M.Halûk SEVEL

mhsevel@gmail.com

Kasım 2014, İzmir

PSİKROMETRİ II – Bölüm 1 – Başlık 1 – Kış Kliması

1. KIŞ KLİMASI

1.1. %100 HARİCİ HAVALI KLİMA SANTRALI,YALNIZ ISITMA:

Problem: Toplam hacmi 1200 m3olan bir mahallin ısı kaybı 26 kw’tır. Bu mahallin havasının saatte  8 defa değiştirilmesi ve %100 harici hava kullanılması istenmektedir. Dış hava kış dizayn şartları -10oC, mahal şartları ise 20oC’tır. Klima santralındaki psikrometrik prosesi çizin ve klima santralının tasarımını yapın.

1 kJ = 0.238846 kCal

1 Watt= 0.86 kCal/h

dolayısıyla

1 Watt= 0.86/0.238846 = 3.60065 kJ    ;   1kW= 3600.65kJ

Bu durumda yeni “SI” birimlerine göre mahallin ısı yükü:

26×3600.65=93617 kJ/saat’tir.

Mahal için gerekli hava debisi ise:

V=8 x 1200 = 9600 m3/saat bulunur.

Mahal sıcaklığı 20C ve hava debisi 9600 m3/saat olduğuna göre, mahal ısı kaybını karşılamak için gerekli üfleme sıcaklığını bulalım.

Qmahal=V x cpx (1/γ)x (tSA – tRA)

cp=Havanın özgül ısısı……………………………………………..    1.041 kJ/kg

ϒ =Havanın özgül hacmi (ortalama)..……………………….    0.800 m3/kg

Değerleri yerine koyduğumuzda:

93617= 9600 x 1.041 x( 1/0.800)x(tSA – 20)

tSA  = 27.49oC ≈ 28oC bulunur.

Dış havanın mahal şartlarına kadar ısıtılması için gerekli ısı miktarı:

Qdış hava=V x cpx (1/γ)x (tRA – tOA)

Qdış hava=9600 x 1.041 x (1/0.800)x (20 + 10)=374769 kJ/saat

Klima santralındaki ısıtıcı bataryanın toplam yükü ise:

ΣQ= Qmahal + Qdış hava

ΣQ= 93617 + 374760 = 468377 kJ/saat  (= 130.08 kW)

Bu prosesi psikrometrik diyagram üzerinde gösterelim.

hOA= -7.2585 kJ/kg …………………..(bkz. Psikrometri-I, sayfa 132, 8-Tablo ve diyagramlar)

γOA= 0.7469 m3/kg…………………… (bkz. Psikrometri-I, sayfa 132, 8-Tablo ve diyagramlar)

hRA    = 23.00   kJ/kg …………………… (Yukarıdaki psikrometrik diyagramdan)

γRA    = 0.8305 m3/kg h…………………(bkz. Psikrometri-I, sayfa 133, 8-Tablo ve diyagramlar)

hSA= 31.60    kJ/kg …………………… (Yukarıdaki psikrometrik diyagramdan)

γSA= 0.8565  m3/kg h…………………(bkz. Psikrometri-I, sayfa 133, 8-Tablo ve diyagramlar)

Önceki hesabımızda olduğu gibi “ϒ”değerini 0.800 m3/kg kabul ederek hesabımızı yapabiliriz.

Qdış hava=V x (1/γ)x (hRA– hOA)

Qmahal   =V x (1/γ)x (hSA – hRA)

ΣQ= Qmahal + Qdış hava

Bu duruma göre:

Qdış hava=V x (1/γ)x (hRA– hOA)

Qdış hava=9600 x (1/0.800)x (23.00+7.2585)

Qdış hava=363 102 kJ/saat

 

Qmahal   =V x (1/γ)x (hSA – hRA)

Qmahal   =9600 x (1/0.800)x (31.60– 23.00)

Qmahal   =103200 kJ/saat

 

ΣQ= Qmahal + Qdış hava

 ΣQ= 103200+ 363102 = 466302 kJ/saat= 129.50 kW

İki hesaplama metodu arasındaki farklılık havanın özgül hacminin sabit kabul edilmesinden ve psikrometrik diyagramda yapılan okuma hatalarından kaynaklanmaktadır. Fark %1’den azdır ve ihmal edilebilir. Çok hassas bir hesap için her sıcaklık için özgül hacimleri de dikkate almak gerekir, söyleki:

Qdış hava=V x (hRAx(1/γRA)– hOAx(1/γOA))

Qmahal   =V x (hSAx(1/γSA)– hRAx(1/γRA))

 ΣQ= Qmahal + Qdış hava

Qdış hava=9600 x (23.00x(1/0.8305)+ 7.2585x(1/0.7469))=359158 kJ/saat

Qmahal  =9600 x (31.60x(1/0.8565)– 23.00x(1/0.8305))  = 88322 kJ/saat

ΣQ        = 359158 + 88322 = 447480 kJ/saat = 124.3 kW

Son yapılan hesap üç metod içinde en hassas olanıdır. Ancak aradaki fark %5’in altındadır. Bu nedenle konfor şartları içinde yapılacak hesaplarda her üç metod da uygulanabilir. Tercih hesap  yapan  kişiye aittir. Ancak  çok  yüksek sıcaklıklar (t>50oC) ve çok  düşük  sıcaklıklar

(t<-15oC) esas alınarak hesap yapılacaksa muhakkak her sıcaklığa ait özgül hacim değerleri dikkate alınmalıdır.

Dikkate alınması gereken diğer bir husus ta irtifa (deniz seviyesinden yükseklik)tir. İrtifa arttıkça atmosferik basınç azalacağından ve bu nedenle havanın özgül hacmi artacağından toplam ısı yüklerinde değişiklikler olacaktır. Be nedenle hesaba esas olan ortama en yakın psikrometrik diyagram ve tablolar kullanılmalıdır.

Aşağıdaki resimde, probleme konu olan,%100 harici havalı klima santralı görülmektedir.

1.2. KARIŞIM HAVALI KLİMA SANTRALI, YALNIZ ISITMA:

Problem: Toplam hacmi 1200 m3olan bir mahallin ısı kaybı 26 kw’tır. Bu mahallin havasının saatte  8 defa değiştirilmesi ve %100 harici hava kullanılması istenmektedir. Dış hava kış dizayn şartları -10oC, mahal şartları ise 20oC, bağıl nemi %35’dir.Mahalde 32 kişi bulunmaktadır. Kişi başına 60 m3/saat taze hava miktarı esas alınarak klima santralındaki psikrometrik prosesi çizin ve klima santralının tasarımını yapın.

Vtoplam=1200 x 8 = 9600 m3/saat

Vdış       = 32 kişi x 60 m3/saat.kişi = 1920 m3/saat

Dış hava oranı= 1920 / 9600 = 0.20 =%20

Psikrometrik diyagram üzerine dış hava-mahal havası karışımı işleyip prosesimizi belirleyelim.

“Ka” olarak gösterilen konum %20 dış hava ile %80 dönüş (resirküle) havanın karıştığı konumdur. “OA-RA” hattı iç hava ile dış havanın karışım prosesini göstermektedir. Analitik olarak çözüm yaptığımızda “OA-RA” uzunluğunun %20’sine eşit olan mesafe “RA” tarafından işaretlenir. Bu nokta “Ka”, iki havanın karışım noktasıdır.

“RA” mahal şartlarını, “SA” da üfleme havasının şartlarını simgelemektedir. Bir önceki örnekte olduğu gibi “tSA” ile “tRA” arasındaki ısıtma prosesi mahal ısı kaybını karşılamak için yapılan prosestir. “tKA” ile “tSA” arasındaki proses ise dış havadan kaynaklanan ısıtma prosesidir. 20oC kuru termometre sıcaklığındaki hava -10oC kuru termometre sıcaklığındaki dış hava  ile  yukarıda belirtilen  şartlarda  karışarak “Ka” meydana  gelmiştir. “Ka”nın kuru termometre sıcaklığı 14oC’tır.  Dolayısıyla karışım nedeniyle 14oC’a kadar soğuyan karışım havası mahal kuru termometre sıcaklığı olan 20oC’a kadar ısıtılacak ve bu sayede dış havanın yarattığı soğuma efekti giderilecek, bilahare hava üfleme sıcaklığına kadar ısıtılmak suretiyle mahal ısı kaybı karşılanmış olacaktır. Bu uygulamada %100 harici hava yerine mahaldeki insan sayısı dikkate alınarak belirli bir oranda (%20) harici hava kullanımına gidilmiş ve önemli ölçüde enerji tasarrufu yapılmıştır.

Mahal ısı yükünün karşılanması “1.0” daki problemde olduğu gibidir. Oradaki hesabı aynen buraya alıyoruz.

Yeni “SI” birimlerine göre mahallin ısı yükü:

26×3600.65=93617 kJ/saat’tir.

Mahal için gerekli hava debisi ise:

V=8 x 1200 = 9600 m3/saat’tir.

Mahal sıcaklığı 20oC ve hava debisi 9600 m3/saat olduğuna göre, mahal ısı kaybını karşılamak için gerekli üfleme sıcaklığını bulalım.

Qmahal=V x cpx (1/γ)x (tSA – tRA)

cp=Havanın özgül ısısı……………………………………………..    1.041 kJ/kg

ϒ =Havanın özgül hacmi (ortalama)..……………………….    0.800 m3/kg

Değerleri yerine koyduğumuzda:

93617= 9600 x 1.041 x( 1/0.800)x(tSA – 20)

tSA  = 27.49oC ≈ 28oC bulunur.

Karışım havasının mahal şartlarına kadar ısıtılması için gerekli ısı miktarı:

Qdış hava=V x cpx (1/γ)x (tRA – tOA)

Qdış hava=9600 x 1.041 x (1/0.800)x (20 – 14)=74952 kJ/saat

Klima santralındaki ısıtıcı bataryanın toplam yükü ise:

ΣQ= Qmahal + Qdış hava

ΣQ= 93617 + 74952 = 168569 kJ/saat  (= 48.62 kW)

Karışım havalı, yalnız ısıtıcı bataryalı klima santralının resmi aşağıdadır. Bu uygulamada klima santralının iki hava girişi bulunmaktadır. Bunlardan biri “RA” olarak gösterilen dönüş havası, diğeri de “OA” olarak gösterilen dış havadır. Bu uygulamada her iki hava girişi üzerinde debi reğlaj damperleri vardır. Bu damperler sayesinde karışım oranı belirlenir ve sabitlenir. Ancak

Dış hava sıcaklığının 0oC’ın altında olması nedeniyle, sistem karışım havasıyla da çalışsa bir donma riski vardır. Bu nedenle damperlerin üzerine iki konumlu servomotorlar (damper motorları) konmasında yarar vardır. Donma konusu klima santralları otomatik kontrolunda detaylı bir biçimde ele alınacaktır.

1.3. %100 DIŞ HAVALI KLİMA SANTRALI, ISITMA VE HAVA YIKAYICI İLE NEMLENDİRME

Problem: Toplam hacmi 1200 m3olan bir mahallin ısı kaybı 26 kw’tır. Bu mahallin havasının saatte  8 defa değiştirilmesi ve %100 harici hava kullanılması istenmektedir. Dış hava kış dizayn şartları -10oCKT,%70 rH, mahal şartları ise 20oCKT, %50 rH’tır.Klima santralında hava yıkayıcı ile nemlendirme yapılıp, üfleme havasının mutlak neminin oda şartlarına çıkarılması istenmektedir.  Klima santralındaki psikrometrik prosesi çizin ve klima santralının tasarımını yapın.

1 kJ = 0.238846 kCal

1 Watt= 0.86 kCal/h

dolayısıyla

1 Watt= 0.86/0.238846 = 3.60065 kJ    ;   1kW= 3600.65kJ

Bu durumda yeni “SI” birimlerine göre mahallin ısı yükü:

26×3600.65=93617 kJ/saat’tir.

Mahal için gerekli hava debisi ise:

V=8 x 1200 = 9600 m3/saat bulunur.

Mahal sıcaklığı 20oC ve hava debisi 9600 m3/saat olduğuna göre, mahal ısı kaybını karşılamak için gerekli üfleme sıcaklığını bulalım.

Qmahal=V x cpx (1/γ)x (tSA – tRA)

cp=Havanın özgül ısısı……………………………………………..    1.041 kJ/kg

ϒ =Havanın özgül hacmi (ortalama)..……………………….    0.800 m3/kg

Değerleri yerine koyduğumuzda:

93617= 9600 x 1.041 x( 1/0.800)x(tSA – 20)

tSA  = 27.49oC ≈ 28oC bulunur. Bu sıcaklık psikrometrik diyagramda “SA” olarak gösterilmektedir.

Psikrometrik proses ise aşağıda gösterildiği gibidir.

Bu prosesle ilgili önemli hususları aşağıdaki gibi belirtebiliriz:

  • Nemlendirme neticesinde “wOA” olan dış havanın mutlak nemi “wRA”seviyesine çıkarılacaktır.
  • Bu işlem için hava yıkayıcısı kullanılacaktır. Havanın içine su püskürtülme ile neminin arttırılması işlemi adyabatik bir işlemdir, sabit entalpide cereyan eder. Buharlaşan su gerekli buharlaşma enerjisini havadan alacak ve bunun neticesi bir soğuma meydana gelecektir.
  • Evaporatif işlem neticesi havanın soğumasını karşılayabilmek, aynı zamanda mahal ısı ihtiyacını karşılayabilmek için ikinci bir ısıtıcıya gerek vardır. Bu nedenle klima santralında “ön ısıtıcı” ve “son ısıtıcı” olarak adlandırılan iki ısıtıcı batarya bulunacaktır.

“OA-1” prosesi dış havanın ön ısıtıcıda ısıtılması işlemidir. “1-2” prosesi ise havanın içine su püskürtülmesi neticesi mutlak neminin arttırılması işlemidir. “2-SA” prosesi ise havanın tekrar ısıtılması işlemidir. Bu işlem hem evaporatif soğumayı karşılamakta, hem de mahal ısı kaybı için gerekli enerjiyi üfleme havasına ilave etmektedir.

Şimdi ön sıtıcı ve son ısıtıcı büyüklüklerini belirleyelim.

cp=Havanın özgül ısısı ………………………………………………. 1.041 kJ/kg

γ=Havanın özgül hacmi (ortalama)..……………………….    0.800 m3/kg

hOA= -7.2585 kJ/kg …………………..(bkz. Psikrometri-I, sayfa 132, 8-Tablo ve diyagramlar)

h1    =   29.80 kJ/kg …………………… (Yukarıdaki psikrometrik diyagramdan)

h2    =   29.80 kJ/kg …………………… (Yukarıdaki psikrometrik diyagramdan)

hSA    =  46.70 kJ/kg …………………… (Yukarıdaki psikrometrik diyagramdan)

Ön ısıtıcı büyüklüğü:

Qön ısıtıcı=V x (1/γ)x (h1– hOA)

Qön ısıtıcı=9600 x (1/0.800)x (29.80+7.2585)

Qön ısıtıcı=444 702 kJ/saat

Qön ısıtıcı =123,50 kW

 

Son ısıtıcı büyüklüğü:

Qson ısıtıcı=V x (1/γ)x (h1– hOA)

Qson ısıtıcı=9600 x (1/0.800)x (46.70– 29.80)

Qson ısıtıcı= 202 800 kJ/saat

Qson ısıtıcı = 56.32 kW

Nemlendirici için bir hesaba gerek yoktur. Hava yıkayıcılı sistemlerde genel tatbikat 1 m3/saat hava için 0.8 ila 1 lt/saat suyun püskürtülmesi tarzındadır.Nozul basıncı da seçilen nozul tipine bağlı olup genelde 15mSS ila 30mSS arasındadır. Dolgu tipi nemlendirici (matt type humidifier) kullanılıcaksa üretici firma değerleri esas alınmalıdır. Klima santralının şematik çizimi aşağıdadır.

 

Şekilde görülen “deflektör” havaya yön verici görevini yerine getirmektedir. “Separatör” ise havaya karışmamış su damlacıklarının sürüklenmesine mani olmaktadır.

1.4. KARIŞIM HAVALI KLİMA SANTRALI, ISITMA VE HAVA YIKAYICI İLE NEMLENDİRME

Problem: Toplam hacmi 1200 m3olan bir mahallin ısı kaybı 26 kw’tır. Bu mahallin havasının saatte  8 defa değiştirilmesi ve %50 harici hava kullanılması istenmektedir. Dış hava kış dizayn şartları -10oCKT,%70 rH, mahal şartları ise 20oCKT, %50 rH’tır.Klima santralında hava yıkayıcı ile nemlendirme yapılıp, üfleme havasının mutlak neminin oda şartlarına çıkarılması istenmektedir. Klima santralındaki psikrometrik prosesi çizin ve klima santralının tasarımını yapın.

1 kJ = 0.238846 kCal

1 Watt= 0.86 kCal/h

Mahal için gerekli hava debisi ise:              V=8 x 1200 = 9600 m3/saat bulunur.

Mahal sıcaklığı 20oC ve hava debisi 9600 m3/saat olduğuna göre, mahal ısı kaybını karşılamak için gerekli üfleme sıcaklığını bulalım.

Qmahal=V x cpx (1/γ)x (tSA – tRA)

cp=Havanın özgül ısısı……………………………………………..    1.041 kJ/kg

ϒ =Havanın özgül hacmi (ortalama)..……………………….    0.800 m3/kg

Değerleri yerine koyduğumuzda, daha önceki problem çözümlerinde olduğu gibi:

93617= 9600 x 1.041 x( 1/0.800)x(tSA – 20)

tSA  = 27.49oC ≈ 28oC bulunur. Bu sıcaklık psikrometrik diyagramda “SA” olarak gösterilmektedir.

%50 dış hava ile %50 dönüş havasının karışım konumu OA-RA proses hattının tam ortasında olup aşağıdaki değerlere sahiptir.

tKa= +5oCKT

hKa= 15.6 kJ/kg

wKa=4.2 gr/kgda

 

Mahal şartları (RA) :

tRA= +20oCKT

hRA= 38.8.0 kJ/kg

wRA=7.3 gr/kgda (=%50 rH)

 

Dış hava şartları (OA):

tOA= -10oCKT

hOA= -7.2585 kJ/kg

 

Daha önceden belirlenen üfleme havası (SA) şartları:

tSA= +28oCKT

hSA= 47.0 kJ/kg

wSA=7.3 gr/kgda

 

Ön ısıtıcı batarya çıkışı “1” konumunun değerleri:

t1= +18.6oCKT

h1= 29.5 kJ/kg

w1=4.2 gr/kgda

 

Hava yıkayıcı çıkışı “2” değerleri:

t2= +11.3oCKT

h2= 29.5 kJ/kg

w2=7.3 gr/kgda

Psikrometrik proses bir önceki, %100 dış havalı sistemin benzeridir. Ön ısıtıcı batarya kapasitesi:

Qön ısıtıcı=V x (1/γ)x (h1– hKA)

Qön ısıtıcı=9600 x (1/0.800)x (29.50+15.60)

Qön ısıtıcı= 166 800 kJ/saat

Qön ısıtıcı = 46.33  kW

Son ısıtıcı kapasitesi:

Qson ısıtıcı=V x (1/γ)x (hSA– h2)

Qson ısıtıcı=9600 x (1/0.800)x (47.00-29.50)

Qson ısıtıcı= 210 000 kJ/saat

Qson ısıtıcı = 58.32  kW

Son ısıtıcı batarya kapasitesinin 26 kW’ı mahal ısı kayıplarını karşılamak, bakiye ise hava yıkayıcıda evaporatif olarak soğuyan havanın mahal kuru termometre sıcaklığına kadar ısıtılması için gerekli olan ısı miktarıdır.

1.5. %100 DIŞ HAVALI KLİMA SANTRALI, ISITMA VE BUHARLI NEMLENDİRİCİ İLE NEMLENDİRME

Buharlı nemlendirmenin sağladığı en büyük avantaj klima santralının boyunun kısalması ve daha az yer işgal etmesidir. Buharlı nemlendiricilerin buhar püskürtme probları santral gövdesi içine yerleştirilebileceği gibi üfleme kanalına da yerleştirilebilir.

Buharlı nemlendirmenin diğer bir üstünlüğü de hassas bir oransal kontrol yapabilme olanağıdır. Hava yıkayıcılı nemlendirmede çok zor olan bu uygulama, iki yollu bir oransal vana ve oransal bir higrostat ile (veya DDC/BMS uygulaması varsa bir bağıl nem hissedici ile)kolaylıkla gerçekleştirilebilir.

Atık buharın mevcut olduğu, büyük lokanta, hastane, otel be benzeri tesislerde de son derece ekonomik çözümler getirir.

Burada da, devamlılık açısından, 1.3. numaralı konuda ele aldığımız mahallin kış klimasını bu sefer buharlı nemlendirici ile yapacağız.

Problem: Toplam hacmi 1200 m3olan bir mahallin ısı kaybı 26 kw’tır. Bu mahallin havasının saatte  8 defa değiştirilmesi ve %100 harici hava kullanılması istenmektedir. Dış hava kış dizayn şartları -10oCKT,%70 rH, mahal şartları ise 20oCKT, %50 rH’tır.Klima santralında havanın nemlendirilmesinin buharlı nemlendirici ile yapılıp, üfleme havasının mutlak neminin oda şartlarına çıkarılması istenmektedir.  Klima santralındaki psikrometrik prosesi çizin ve klima santralının tasarımını yapın.

1 kJ = 0.238846 kCal

1 Watt= 0.86 kCal/h               dolayısıyla

1 Watt= 0.86/0.238846 = 3.60065 kJ    ;   1kW= 3600.65kJ

Bu durumda yeni “SI” birimlerine göre mahallin ısı yükü:

26 kW x 3600.65=93617 kJ/saat’tir.

Mahal için gerekli hava debisi ise:

V=8 x 1200 = 9600 m3/saat bulunur.

Mahal sıcaklığı 20oC ve hava debisi 9600 m3/saat olduğuna göre, mahal ısı kaybını karşılamak için gerekli üfleme sıcaklığını bulalım.

Qmahal=V x cpx (1/γ)x (tSA – tRA)

cp=Havanın özgül ısısı……………………………………………..    1.041 kJ/kg

γ=Havanın özgül hacmi (ortalama)..……………………….    0.800 m3/kg

Değerleri yerine koyduğumuzda, daha önceki problem çözümlerinde olduğu gibi:

93617= 9600 x 1.041 x( 1/0.800)x(tSA – 20)

tSA = 27.49oC ≈ 28oC bulunur. Bu sıcaklık psikrometrik diyagramda “SA” olarak gösterilmektedir. Bu nedenle -10oCKT sıcaklığındaki dış hava +28oCKT sıcaklığına kadar ısıtılacaktır.

Bu duruma göre:

Q=V x (1/γ)x (h1 – hOA)

Q=9600 x (1/0.800)x (31.60+7.2585)

Q= 466 302 kJ/saat

Q= 466 302 /3600.65=129.50 Kw

(hSA= 31.60    kJ/kg …………………… ( psikrometrik diyagramdan))

Buhar ile nemlendirme izotermik bir proses olarak tanımlanır. Havaya doğrudan buhar ilave ettiğimiz için yalnız havanın mutlak nem oranı artmakta, sıcaklığın sabit kaldığı kabul edilmektedir. Örneğin buharın sıcaklığı ile buhar üflenen havanın kuru termometre sıcaklıkları birbirine eşit olması durumunda bu varsayım doğrudur. Ancak hakikatte bu proses psikrometrik diyagramda hafif sağa yatan bir doğru tarzında oluşur. Çünkü üflenen buharın sıcaklığı havanın kuru termometre sıcaklığından çok yüksektir. Bu nedenle havayı nemlendirmeye ilaveten az da olsa havayı bir miktar ısıtmış olur.

Aşağıdaki psikrometrik diyagramda bu prosesi görmekteyiz. Burada psikrometrik diyagramda bulunan yeni bir şema ile karşılaşıyoruz. Dairesel olan bu şema “Psikrometri-I” kitabımızda deteylı bir biçimde anlatılmıştı. Ancak kısaca tekrarında fayda görüyoruz.

Bu daire ortadan ikiye bölünmüş olup alt kısmı duyulur ısı oranını “qsens/qtot” vermektedir. Üst kısmı ise “Δh/Δw” değeridir. Bu değer bir gram buharın entalpik değerine eşit olup bize buharlı nemlendiricilerde proses hattının eğimini belirler.

Jeneratör tipi buharlı nemlendiricilerde jeneratör buhar çıkış sıcaklığı 102 ila 103oC civarındadır. Ancak boru şebekesi içinde soğuma olabilmesi ihtimali dikkate alınarak buhar üfleme sıcaklığı 100oC kabul edilebilir. 100oC buharın entalpisi “hg-100” 2675.57 kJ/kg’dır (bkz, Psikrometri-I, sayfa-26, Tablo-2).

hg-100= 2675.57 kJ/kg = 2.67557 kJ/gr.

Biz de üst yarı dairede 2.67557 noktasını bulup bu noktası dairenin merkeziyle birleştiririz. Bu bizim nemlendirme proses hattımızın eğimidir. Bu hattı “SA” noktasına taşıyıp, “OA-1” ısıtma proses hattıyla kesiştiriz. “1” noktasının kuru termometre sıcaklığı 28oC değil, aslında 27.3oCKT’dir. Bu değeri dikkate alarak ısıtıcı batarya kapasitesini yenileyebiliriz.

Q=V x (1/γ)x (h2 – hOA)

Q=9600 x (1/0.800)x (30.50+7.2585)

Q= 453 102 kJ/saat

Q= 453 102 /3600.65=125.84 Kw bulunur.

Buharlı nemlendiricinin kapasite de aşağıdaki gibi hesaplanır:

WOA= 1.2 gr/kgda

WRA= 7.4 gr/kgda

ϒ     = 0.850 m3/kg (ortalama değer)

Mbuhar= V x (1/γ) x (WRA– WOA)

Mbuhar= 9600 x (1/0.850) x (7.4 – 1.2)

Mbuhar= 70 023.53 gr/saat = 70 kg/saat

Bu sistem için gerekli olan buhar jeneratörünün kapasitesi 70 kg/saat olmalıdır.

Jeneratörün elektrik sarfiyatını hesaplayalım (%100 adyabatik olduğu kabulüyle)

hf-15  = 62.98 kJ/kg  ………….(suyun 15oC’ta jeneratöre geldiği varsayımıyla)

hg-103=2680.28 kJ/kg

Q=M x (hg-103– hf-15  )

Q=70 x (2680.28 – 62.98  )

Q=183 211 kJ/saat = 50.88 kW

Buharlı nemlendirici bünyesinde olan %100 dış havalı klima santralı şematik olarak aşağıdadır.

1.6. KARIŞIM HAVALI KLİMA SANTRALI, ISITMA VE BUHARLI NEMLENDİRİCİ İLE NEMLENDİRME

Problem: Toplam hacmi 1200 m3olan bir mahallin ısı kaybı 26 kw’tır. Bu mahallin havasının saatte  8 defa değiştirilmesi ve %30 harici hava kullanılması istenmektedir. Dış hava kış dizayn şartları -10oCKT,%70 rH, mahal şartları ise 20oCKT, %50 rH’tır.Klima santralında havanın nemlendirilmesinin buharlı nemlendirici ile yapılıp, üfleme havasının mutlak neminin oda şartlarına çıkarılması istenmektedir. Klima santralındaki psikrometrik prosesi çizin ve klima santralının tasarımını yapın.

Önceki problemlerde sunduğumuz değişim çarpanlarını, mahal ısı yükünü belirleyelim.

1 kJ = 0.238846 kCal

1 Watt= 0.86 kCal/h               dolayısıyla

1 Watt= 0.86/0.238846 = 3.60065 kJ    ;   1kW= 3600.65kJ

Bu durumda yeni “SI” birimlerine göre mahallin ısı yükü:

26 kW x 3600.65=93617 kJ/saat’tir.

Mahal için gerekli hava debisi :

V=8 x 1200 = 9600 m3/saat olduğuna göre,

Mahal ısı kaybını karşılamak için gerekli üfleme sıcaklığını bulalım.

Qmahal=V x cpx (1/γ)x (tSA – tRA)

cp=Havanın özgül ısısı……………………………………………..    1.041 kJ/kg

γ=Havanın özgül hacmi (ortalama)..……………………….    0.800 m3/kg

Değerleri yerine koyduğumuzda, daha önceki problem çözümlerinde olduğu gibi:

93617= 9600 x 1.041 x( 1/0.800)x(tSA – 20)

tSA= 27.49oC ≈ 28oC bulunur. Bu sıcaklık psikrometrik diyagramda “SA” olarak gösterilmektedir.

Buradaki çözüm bir önceki, %100 dış havalı çözüme benzemektedir. Ancak bu uygulamada %30 dış hava kullanılmaktadır. Bu nedenle OA-RA proses hattı üzerinde %30 karışım noktası belirlenir. “Ka” olarak adlandırdığımız bu noktadan sabit mutlak nem oranında, yatay bir hat çizilir. Bu bizim ısıtma proses eğrimiz olacaktır.

Diğer yatay bir bir hat ta kesik çizgi halinde “RA” noktasından çizilir. Bu hat üzerindeki 28oCKT noktası bizim klimatize üfleme havası konumu “SA”dır. “Δh/ Δx” çemberi üzerindeki 2.675 değeri ile daire merkezini birleştiren hattı paralel olarak “SA” noktasına taşıyıp uzatır ve “OA”dan gelen yatay hatla kesişmesini sağlarız. Bu bizim “1” konumumuz olup ısıtıcı batarya çıkış şartıdır. 1.6. sayılı konuda anlattığımız gibi buharla nemlendirme hattı tam bir isotermik hat değildir, üflenen buharın sıcaklığına göre belirlenir.

Bu duruma göre:

Q=V x (1/γ)x (h1 – hKa)

(h1= 42.00    kJ/kg …………………… ( psikrometrik diyagramdan))

(hKa= 25.00    kJ/kg …………………… ( psikrometrik diyagramdan))

Q=9600 x (1/0.800)x (42.00+25.00)

Q= 204 000 kJ/saat

Q= 204 000 /3600.65= 56.66 Kw

Buharlı nemlendirici kapasitesi:

WKa= 5.3 gr/kgda

WRA= 7.4 gr/kgda

γ     = 0.850 m3/kg (ortalama değer)

Mbuhar= V x (1/γ) x (WRA– WKa)

Mbuhar= 9600 x (1/0.850) x (7.4 – 5.3)

Mbuhar= 23 717.65 gr/saat = 24 kg/saat

Bu sistem için gerekli olan buhar jeneratörünün kapasitesi 24 kg/saat olmalıdır.

Jeneratörün elektrik sarfiyatını hesaplayalım (%100 adyabatik olduğu kabulüyle)

hf-15  = 62.98 kJ/kg  ………….(suyun 15oC’ta jeneratöre geldiği varsayımıyla)

hg-103=2680.28 kJ/kg

Q=M x (hg-103– hf-15  )

Q=24 x (2680.28 – 62.98  )

Q=62 815 kJ/saat = 17.45 kW bulunur.

Karışım havalı, buharlı nemlendiricili, yalnız ısıtma bataryalı klima santralının çizimi aşağıda görülmektedir.

1.7. DÖNÜŞ KANALINDAKİ SOĞUMANIN İNCELENMESİ

Şu ana kadar yaptığımız tüm uygulamalarda dönüş havası kuru termometre sıcaklığını oda sıcaklığına eşit olarak kabul ettik. Ancak hakikatte bu durum biraz farklıdır. Eğer dönüş havası kanalları ısıtılmamış (klimatize edilmemiş) mahallerden geçiyorsa kış uygulamasında belirli bir oranda ısı kaybına uğrayacak, bunun neticesi olarak ta dönüş havası kuru termometre sıcaklığında belirgin bir düşme olacaktır. Eğer dönüş havası kanalları izole edilmemişse bu sıcaklık düşüşü çok daha belirgin ve daha büyük değerlerde olacaktır. Bu husus ısıtıcı batarya büyüklüğü belirlenirken dikkate alınması gereken bir husustur.

Dönüş havasındaki soğumayı hesap yoluyla bulmak mümkündür. Bunun için öncelikle ısıtılmamış mahallerin sıcaklıklarının bilinmesi veya hesaplanması gerekir. Hesaplanması gereken ikinci bir husus ta dönüş havası kanalının toplam satıh alanıdır. Kanal ısı iletim katsayısı bilindiğine veya kolaylıkla hesaplanabileceğine göre ısı kaybı ve bunun neticesi dönüş havasındaki soğuma hesap yoluyla bulunabilir. Ancak bu hesap yöntemi ile elde edilecek sonuç yaklaşık bir değer olacağından soğuma kabul edilebilir. Soğuma ve sıcaklık düşümü dış hava sıcaklığına da son derece bağlıdır. Ancak bu düşüm  izoleli kanallarda sıcaklık düşümü 1oC ila 2oC, izolesiz kanallarda da 2oC ila 4oC kabul edilebilir.

%100 dış hava ile çalışan, ısı geri kazanımsız sistemlerde bu soğumanın hiçbir önemi yoktur. Çünkü havanın tamamı egzost edilmektedir.Ancak düşük dış hava oranıyla çalışan, örneğin %50’nin altında dış hava oranına sahip uygulamalarda karşımıza küçümsenmeyecek değerler çıkar. Bu durumu psikrometrik diyagramda inceleyelim. Önceki örneklerde olduğu gibi -10oCKT, %70 rH dış hava, 20oCKT, %50 rH mahal şartlarında, %20 dış hava oranıyla çalışan bir klima santralını ele alalım. Dönüş havası kanallarının izolesiz olması nedeniyle dönüş havasında 3oC soğuma olduğunu, daha önceki örneklerimizde olduğu gibi üfleme havası sıcaklığının da 28oCKT olduğunu kabul edelim. Hava debimiz 9600 m3/saat’tir.

Yukarıdaki psikrometrik diyagramda “RA” mahal şartlarını, “RR” dönüş havasının klima santralına giriş şartlarını, “RA-RR” proses hattı da dönüş kanalındaki soğumayı göstermektedir. Bu soğumanın neticesi karışım noktası “Ka2” olarak belirlenmektedir. Halbuki dönüş hava kanalında hiç ısı kaybı olamasaydı karışım noktası “Ka1” olacaktı. Bu nedenle klima santralı ısıtıcı batarya büyüklüğü belirlenirken “Ka2-Ka1” hattı kadar ilave ısıya ihtiyaç duyulacaktır.

Her iki durum için klima santralı ısıtıcı batarya büyüklüğünü belirleyelim.

Q1=V x (1/γ)x (hSA – hKa1)

Q2=V x (1/γ)x (hSA – hKa2)

Bu denklemlerde:

Q1: Dönüş hava kanalında soğuma olmaksızın ısıtma yükü

Q2: Dönüş hava kanalındaki soğuma dikkate alınarak ısıtma yükü

hKa1= 29.00 kJ/kg

hKa2= 27.00 kJ/kg

hSA = 43.00 kJ/kg

γ   = 0.825 m3/kg

Q1=V x (1/ϒ)x (hSA – hKa1)

Q1=9600 x (1/0.825)x (43.00– 29.00)

Q1=162 909 kJ/saat =45.25 Kw

Q2=V x (1/γ)x (hSA – hKa2)

Q2=9600 x (1/0.825)x (43.00– 27.00)

Q2=186 182 kJ/saat = 51.71 kW

Kanaldaki soğuma neticesi 51.71-45.25=6.46 kW daha fazla ısıtmaya ihtiyaç bulunmaktadır.

1.8. ISI GERİ KAZANIM ELEMANLARININ TANIMI

Isı geri kazanım sistemleri “Psikrometri-I” isimli kitabımızda detaylı bir şekilde incelenmişti. Ancak burada kısa bir tanımının yapılmasının faydalı olacağı düşüncesiyle konuyu özet olarak tekrarlıyoruz. Reküperatör, veya Türkçe tabiriyle ısı değiştirgeçlerinin kullanıldığı ısı geri kazanım işlemlerini dört ana grupta toplayabiliriz.

  • Çift serpantinli ısı geri kazanım sistemleri
  • Isı borulu ısı geri kazanım sistemleri
  • Plakalı eşanjörlü ısı geri kazanım sistemleri
  • Döner tamburlu ısı geri kazanım sistemleri

Klima santrallarının tasarımı açısından her dört uygulama birbirinden farklılık gösterse de psikrometrik açıdan birbirinin aynıdır. Temel farklılık ısı geri kazanım ünitelerinin ısı geri kazanımı gerçekleştirmede gösterdikleri farklılıktır. Bu açıdan ısı geri kazanım elemanlarını iki ana kategoride toplayabiliriz.

  • Yalnız duyulur ısı bazında ısı geri kazanımı gerçekleştirenler
  • Entalpi bazında (toplam enerji) bazında ısı geri kazanımı gerçekleştirenler

Diğer bir sınıflandırma da ısı transfer tarzına göredir.

  • Direkt ısı transferi ile geri kazanım sağlayanlar
  • Üçüncü bir transfer elemanı(hidronik) kullananlar.

Çift serpantinli ısı geri kazanım sistemleri ile ısı borusu geri kazanım sistemleri ısı transferi için hidronik eleman kullanırlar. Bu eleman çift serpantinli sistemlerde su veya su-etilen glikol karışımıdır. Verimi düşük olan (%40 civarı) ve salt duyulur ısı bazında ısı geri kazanımı sağlayan bu sistemin en büyük avantajı vantilasyon ve aspirasyon ünitelerinin aynı mahalde bulunmaları mecburiyetinin olmamasıdır. Örneğin egzost ünitesi çatıda, klima santralı ise bodrum katta olabilir. Transfer boru donanımı ve sirkülasyon pompası vasıtasıyla gerçekleştirilir.

Isı borusunda ise direkt genleşmeye müsait soğutucu akışkandır; en geniş kullanımı olan R-134’dür. Pomapaya gerek göstermeyen, soğutucu akışkanın dansitesinde buharlaşmaya bağlı olarak meydana gelen değişiklikler nedeni sirkülasyonu kendi içinde sağlar. Verim olarak çift serpantinli sistemlere benzerlik gösterirler.

Plakalı eşanjörlerde metal veya LiBr solüsyonu emdirilmiş selülozik elemanlar egzozt ve dış hava arasındaki bölmeyi oluşturur, bu bölme üzerinden ısı iletimi sağlanır. Bu nedenle plakalı ısı geri kazanım eşanjörleri kararlı rejim çalışması olarak kabul edilirler. Plakaları aluminyum veya benzeri metallerden oluşan eşanjörler salt duyulur ısı transferi yapar ve (oC) bazında ısı geri kazanımı sağlar. Selüloz, örneğin LiBr veya benzeri sıvı emdirilmiş kağıt elemanları olanlar duyulur ve gizli ısı transferi yaparlar. Bu eşanjörlere entalpi bazlı ısı geri kazanım eşanjörleri tabir edilir. Plakalı eşanjörlerin verimleri tasarımına bağlı olarak %40 ila %85 arası değişmektedir. Bir plakalı eşanjör aşağıda görülmektedir.

Döner tamburlu eşanjörler salt metal veya satıh kaplamalı metal dolgu malzemesine sahiptirler. Bulundukları klima santralları içinde 80 ila 100 d/dak hızla dönerler. Dönme işlemi küçük bir elektrik motoru vasıtasıyla gerçekleştirilir. Egzost havası tarafındaki tekerleğin yarısı egzost havasının sıcaklığı nedeniyle ısınır ve dönme hareketi neticesi bu havayı soğuk olan dış havaya taşır (yaz aylarında bu işlemin tersi olur). Bu nedenle döner tamburlu ısı geri kazanım eşanjörlerinin çalışma tarzı kararsız rejim olarak kabul edilir. Döner tamburlu eşanjörler üç değişik şekilde imal edilmektedirler:

  1. Salt metal (aluminyum) dolgu malzemeli olanlar : Bu modeller yalnız duyulur ısı tarnsferinde kullanılırlar. Dönme işlemi neticesi cüzi bir miktar nemli havayı da sürükleseler gizli ısı transferi açısından bu husus kabili ihmaldir. Oldukça yüksek duyulur ısı geri kazancı verimine sahiptirler ((%70 ve üzeri).
  2. Satıhları oksitlenmiş aluminyum dolgu malzemeli olanlar:Bu modellere antalpi tekerleği de tabir edilir. Aluminyum dolgu malzemeleri özel banyolarda oksitlendirilip belirli bir mikron kalınlığında oksit tabakasına sahip olurlar. Bu eşanjörlerin yüksek duyulur ısı geri kazanım verimlerine (%70 ve üzeri) karşılık gizli ısı geri kazanım verimleri oldukça düşüktür (%40 civarı).
  3. Dolgu malzemesinin satıhları silika jel kaplı olanlar:Bu modellere absorbsiyon tekerleği de denir. Aluminyum dolgu malzemelerinin sathı özel işlemlerle pulverize silika jel ile kaplanmıştır. Yüksek duyulur ve gizli ısı geri kazanım verimlerine sahiptirler (%70 ve üzeri).

Bu konu ile ilgili detaylı bilgi “Psikrometri-I” kitabında bulunabilir.

1.9. %100 DIŞ HAVALI, DUYULUR ISI GERİ KAZANIMLI, YALNIZ ISITMALI KLİMA SANTRALI.

Problem: Toplam hacmi 1200 m3olan bir mahallin ısı kaybı 26 kw’tır. Bu mahallin havasının saatte  8 defa değiştirilmesi ve %100 harici hava kullanılması istenmektedir. Dış hava kış dizayn şartları -3oCKT, %70 rH, mahal şartları ise 20oCKT, %40 rH’tır. Klima santralında duyulur ısı bazında %55 verimli plakalı ısı geri kazanım eşanjörü kullanılacaktır.  Psikrometrik prosesi çizin ve klima santralının tasarımını yapın.

1kW= 3600.65kJ

Bu durumda yeni “SI” birimlerine göre mahallin ısı yükü:

26×3600.65=93617 kJ/saat’tir.

Klima santralının hava debisi :  V=1200 m3x 8 defa/saat=9600 m3/saat’tir.

Mahal ısı kaybını karşılamak için gerekli olan üfleme sıcalığı da, daha önceki örneklerimizde olduğu gibi:

Qmahal=V x cpx (1/γ)x (tSA – tRA)

cp=Havanın özgül ısısı……………………………………………..    1.041 kJ/kg

γ=Havanın özgül hacmi (ortalama)..……………………….    0.800 m3/kg

Değerleri yerine koyduğumuzda:

93617= 9600 x 1.041 x( 1/0.800)x(tSA – 20)

tSA  = 27.49oC ≈ 28oC bulunur.

Bu işlemle ilgili prosesler alttaki psikrometrik diyagramda görülmektedir.

 

Eğer plakalı ısı geri kazanım eşanjörü kullanılmasaydı “OA” şartlarındaki dış havanın “SA” şartlarına kadar ısıtılması gerekecekti. Bunun için de gerekli olan ısı miktarı:

ΣQ=V x cpx (1/γ)x (tSA– tOA)

ΣQ= 9600 x 1.041 x (1/0.800)x(28+3)

ΣQ=  387 252 kJ/saat = 107.55 kW  olacaktı.

Ancak %55 ısı geri kazanım verimli plakalı  eşanjör  kullanıldığına  göre egzost edilen mahal havasının ısısı büyük oranda dış havaya transfer olunacak ve bu sayede önemli miktarda enerji tasarrufu yapılmış olacaktır. Duyulur ısı bazında ısı geri kazanım işleminde dış hava ile mahal havasının mutlak nem oranları eşanjördeki proses nedeniyle değişmemekte, aynı kalmaktadır. Isı alışverişi yalnız duyulur ısı bazında olmaktadır. Isı alışverişi sonucu oluşan sıcaklıkların nasıl nesaplanacağı TS EN-308’de belirtilmiştir.

η=100 x (tRA-tEA)/(tRA-tOA)

Bu formülde:

η= Eşanjörün ısı kazanım verimi……………………………………………………. (%)

tRA= Egzost edilen havanın eşanjöre giriş sıcaklığı …………………………..(oC)

tEA= Egzost edilen havanın eşanjörden çıkış sıcaklığı ……………………….(oC)

tOA= Dış hava sıcaklığı……………………………………………………………………….(oC)

Bizim örneğimizde ısı geri kazanım eşanjörünün verimi %55 olduğuna göre

η=(tRA-tEA)/(tRA-tOA) = 0.55 =(20-tEA)/(20+3)

tEA=7.35oC

Isı geri kazanım işlemi esnasındaki egzost ve dış havaların ortalama yoğunluklarının eşit olduğunu kabul edersek:

η=(t1-tOA)/(tRA-tOA) = 0.60 =(t1+3)/(20+3)

t1= 9.65oC   bulunur.

Dolayısıyla egzost edilen mahal havasının duyulur ısısının %60 oranında dış havaya transferi ile önemli bir miktarda ısı tasarrufu sağlanmış bulunmaktadır. Çünkü artık dış hava -3oC’tan +28oC’a değil, +9.65oC’tan +28oC’a ısıtılmış olacaktır. Bu nedenle klima santralındaki ısıtıcı batarya büyüklüğü:

ΣQ=V x cpx (1/γ)x (tSA– t1)

ΣQ= 9600 x 1.041 x (1/0.800)x(28-9.65)

ΣQ= 229 228 kJ/saat = 63.70 kW olacaktır.

Bu uygulama sayesinde:

107.55 – 63.70 = 43.85 kW enerji tasarrufu sağlanmaktadır.

Bu uygulamayla ilgili klima santralı da aşağıdaki şematik resimdedir. Resmimizde plakalı eşanjör kullanılmıştır.

 

Plakalı eşanjör, döner tambur veya ısı borusu uygulamalarında vantilatör ve aspiratörün aynı klima santralının kabini içinde olması gerekmektedir. Örneğin çizimimizde görüldüğü gibi iki katlı klima santralı uygulaması yapılmalıdır.

Örneğimizde egzost havasında herhangi bir yoğuşma olmamaktadır. Çünkü RA-EA soğuma proses hattı %100 doyma eğrisini kesmemektedir. Soğuma yalnız duyulur soğuma olduğundan herhangi bir soğuma sözkonusu değildir. Bir sonraki örneğimizde yoğuşmalı bir uygulamayı inceleyeceğiz.

Problem: 20oCKT, %50 rH şartlarındaki  mahal havası egzost edilmektedir. Egzost edilen miktar 10 000 m3/saat’tir. Aynı miktardaki dış hava da duyulur ısı verimi %60 olan plakalı eşanjörden geçirilerek mahalle sevk edilmektedir. Dış hava şartları -10oCKT, %70rH’tır.

  • Mahal havasının eşanjör çıkış sıcaklığını ve yoğuşma miktarını belirleyiniz.
  • Dış havanın eşanjörden çıkış sıcaklığını belirleyiniz.
  • Transfer edilen ısı miktarını hesaplayınız.
  • Eşanjörde karlanma riski var mıdır, irdeleyiniz.

η=100 x (tRA-tEA)/(tRA-tOA)=%60

η=100 x (t1-tOA)/(tRA-tOA)=%60………….. (özgül hacimlerin değişmeyeceği varsayımıyla)

tRA= 20 oC

tOA= -10 oC

Değerleri yerlerine koyduğumuzda:

0.60 = (tRA-tEA)/(tRA-tOA)

0.60 = (20 – tEA)/(20 + 10)

tEA= +2oC

Bu işlemi psikrometrik diyagrama işlediğimizde “EA” konumunun %100 doyma eğrisinin dışında olduğunu görürüz. Bu mümkün değildir (Bkz. Psikrometri-I ). Çünkü 20oCKT, %50 rH

değerlerine sahip “RA” oda konumunun çiy noktası “DP”dir. Bu noktaya kadar yalnız duyulur soğutma olarak gerçekleşen soğutma prosesinin aynen devam etmesi mümkün değildir. Soğutma prosesi bu noktadan itibaren %100 doyma eğrisini takip ederek soğutma ve nem alma olarak devam ederek “EA1” noktasına kadar gelecektir. Bu proseste de dış havaya transfer olunan ısı, egzost edilen mahal havasının ısı kaybına eşittir. Bu eşitliği aşağıdaki gibi gösterebiliriz.

QOA-1 = QRA-EA1 ……………………………………………………………………………………………..…..1

QOA-1= V x cpx(1/γ) x (t1– tOA)………………………………………………………………………….2

QRA-EA1= V x cpx (1/γ)x(tRA– tDP) +  V x (1/γ) x hfgx(wRA– wEA)………..……………3

QRA-EA1= V x (1/γ)x(hRA– hEA) …………………………………………………………………………4

“2” numaralı denklemdeki işlem salt ısınma işlemi olduğundan özgül ısı “cp” ve kuru termometre sıcaklık farklarını kullanarak gerçekleştirilmektedir. Ancak “3” numaralı denklem iki farklı işlemden meydana gelmektedir. Bunlardan birisi havanın duyulur olarak soğutulmasıdır. Diğeri de havadaki mutlak nem oranının azaltılmasıdır. Birinci işlem kuru termometre sıcaklık farkları ve havanın  özgül ısısı dikkate alınarak gerçekleştirilmektedir. Nem alma işleminde ise mutlak nem oranında “wRA-wEA” kadar bir azalma olduğundan bu fark suyun o  sıcaklıktaki buharlaşma (=yoğuşma) entalpisi ile çarpımı neticesi bulunur. Toplam ısı kaybı da bu iki değerin toplamıdır ve entalpi farklarının havanın yoğunluğu ile çarpımına eşittir.

QOA-1= V x cpx(1/γ) x (t1– tOA)

QOA-1= 10000 x 1.041 x(1/0.800) x (8 + 10)

QOA-1= 234 225 kJ/saat = 65.05 kW

QRA-EA1= V x (1/γ)x(hRA– hEA)

QRA-EA1= 10000 x (1/0.800)x(40.0 – 21.7)

QRA-EA1= 228 750 kJ/saat = 63.53 kW

Hesapları sadeleştirmek için havanın özgül hacminin sabit olduğu kabul edilmiştir. Hakikatte verilen sıcaklıklarda havanın özgül yoğunluğu 0.7467 kg/m3ile 0.8403 kg/m3arasında değişmektedir. Değerler aşağıda verilmektedir:

-10oCKT, %70rH…………………0.7467 kg/m3

+8oCKT, %20rH…………………0.7982 kg/m3

+7oCKT, %100rH…………………0.8016 kg/m3

+20oCKT, %50rH…………………0.8403 kg/m3

Egzost havası ısı kaybını hesaplarken +7oCKT ile +20oCT’deki değerlerin ortalaması ile dış havanın ısınmasında -10oCKT ile +8oCKT deki değerlerin ortalamasının kullanılmaları daha hassas bir sonuç verecektir. Ancak önerilen işlemdeki hata payı son derece düşük olduğu için uygulamalarda kullanılabilir.

Bu görüşlerin ışığı altında yapılan hesaplar neticesi egzost edilen havadan dış havaya 65 kW enerji tasarruf edilerek tasarruf sağlandığı görülmektedir. Bir de kondansasyon miktarını hesaplayalım.

M = V x (1/γ)x (wRA– wEA)

M = 10000 x (1/0.800) x( 7.7 -6.0)

M = 21 250 gram/saat

Dizayn koşullarında saatte 21.25 kg yoğuşma meydana gelecektir. Bu nedenle mahal havasının çıkış tarafına (egzost tarafına) terleme tavası konulması gerekmektedir. Eğer çıkış hızı 2.5 m/san.’in üzerindeyse ilaveten separatör (damla tutucu) konması da önerilir. Egzost havası çıkış sıcaklığı 0oC’ın üzerinde olduğu için herhangi bir şekilde karlanma riski yoktur. Eğer çıkış sıcaklığı 0oC veya daha düşük olsaydı defrost tertibatı kullanılması gerekecekti.

1.10. KARIŞIM HAVALI, DUYULUR ISI GERİ KAZANIMLI, YALNIZ ISITMALI KLİMA SANTRALI

Problem: Klima santralının toplam hava debisi 10 000 m3/saat’tir. Klima santralı %50 dış hava ile çalışmaktadır. Dış hava şartları -10oCKT, %70rH’tır. Klima santralında %60 duyulur ısı geri kazanım verimi olan plakalı eşanjör kullanılması düşünülmektedir. Mahallin ısı kaybı 30 kW’tır. Psikrometrik diyagramı çizin, ısıtıcı batarya büyüklüğünü belirleyin.

Önce psikrometrik diyagramı çizip prosesleri inceleyelim.

“OA” şartlarındaki dış hava palakalı ısı geri kazanım eşanjöründen geçerek “1” şartlarına kadar ısıtılma. Bu arada da “RA” şartlarında olan egzost havası “RA-DP-EA” proses hattını takip ederek soğumakta ve ısısını dış havaya transfer etmektedir. Dolayısıyla “OA-1” prosesi dış havanın ısı geri kazanımı neticesi ısınmasını göstermektedir. “1” şartlarındaki ısınmış dış hava “RA” şartlarındaki mahal havası ile %50 oranında karışarak “KA” konumunu belirler. “KA-SA” prosesi ise %50 oranında dış hava, mahal havası karışımının ısıtıcı bataryada ısıtılmasıdır. Bu prosesin 20oCKT’ye kadar olan kısmı dış havanın mahal sıcaklığına kadar ısıtılması, geri kalan kısmı ise mahal ısı kaybını karşılamak için yapılan ilave ısıtma işlemidir. Bu işleme uygun klima santralı aşağıdaki çizimde gösterilmektedir.

Eğer klima santralında plakalı ısı geri kazanım elemanı bulunmasaydı ısıtıcı batarya büyüklüğü “X-SA” olarak belirlenecekti. Halbuki plakalı eşanjör kullanımı ile bu büyüklük “KA-SA”ya indirgenmiş, “X-KA” kadar enerji tasarrufunda bulunulmuş bulunmaktadır.

Isı geri kazanımı olmaksızın ısıtıcı batarya büyüklüğü:

Q= V x cpx (1/γ) x ( tSA-tx)= V x (1/ϒ) x ( hSA-hx)

Isı geri kazanımı sonucu ısıtıcı batarya büyüklüğü:

Qıg= V x cpx (1/γ) x ( tSA-tKA)= V x (1/ϒ) x ( hSA-hKA)

Yapılan enerji tasarrufu ise:

ΔQ= Q – Qıg= V x cpx (1/γ) x ( tKA-tx)= V x (1/ϒ) x ( hKA-hx)

Bu ifadeleri problemimize uygularsak:

Q= 10000 x 1.041 x (1/0.825) x ( 29.4-5)=295 757 kJ/saat =82.14 kW

Qıg= 10000 x 1.041 x (1/0.825) x ( 29.4-14)=194 320 kJ/saat= 53.97 kW….. ısıtıcı batarya büyüklüğü ve;

ΔQ= Q – Qıg= 82.14 – 53.97 = 28.17 kW…………enerji tasarrufu bulunur.

1.11. %100 DIŞ HAVALI, TOPLAM ENERJİ GERİ KAZANIMLI, YALNIZ ISITMALI KLİMA SANTRALI

Çözümlü örneklere geçmeden önce, toplam ısı geri kazanımlı eşanjörler hakkında kısa bilgi verelim. 1.8 sayılı konumuzda ısı geri kazanım elemanlarının genel tanımını yapmış, dört değişik tip elemanı incelemiştik. Bunlardan ikisinin entalpi bazında ısı geri kazanımı yapabildiğini görmüştük. Entalpi bazında ısı geri kazanımı hem duyulur ısı geri kazanımını, hem de gizli ısı geri kazanımı içerir. Bu nedenle bu tip eşanjörler için iki değişik verim kullanılır.

ηduy=100 x (tRA-tEA)/(tRA-tOA)

ηgiz= 100 x (wRA-wEA)/(wRA-wOA)

Bu formülde:

ηduy= Eşanjörün duyulur ısı kazanım verimi……………………………………………. (%)

tRA= Egzost edilen havanın eşanjöre giriş sıcaklığı …………………………….…..(oC)

tEA= Egzost edilen havanın eşanjörden çıkış sıcaklığı ……………….…………….(oC)

tOA= Dış hava sıcaklığı…………………………………………………………………….…………(oC)

 

ηgiz= Eşanjörün gizli ısı kazanım verimi…………………..………………………………. (%)

wRA= Egzost edilen havanın mutlak nem oranı …………………….…….…..( gr/kgda)

wEA= Egzost edilen havanın eşanjörden çıkış mutlak nem oranı ..….( gr/kgda)

wOA= Dış havanın mutlak nem oranı…………………………………….……………(gr/kgda)

Bu işlemi entalpi tekerleği de tabir edilen döner tamburlu toplam enerji geri kazanım elemanını inceleyerek yapalım.

Şematik çizimdeki semboller şöyledir.

tRA= Egzost edilen havanın eşanjöre giriş sıcaklığı …………………………………..(oC)

wRA= Egzost edilen havanın mutlak nem oranı ……………………………….( gr/kgda)

hRA= Egzost edilen havanın entalpisi ……………..…………………………………..( kJ/kg)

 

tEA= Egzost edilen havanın eşanjörden çıkış sıcaklığı ………………………………(oC)

wEA= Egzost edilen havanın eşanjörden çıkış mutlak nem oranı ……( gr/kgda)

hEA= Egzost edilen havanın eşanjörden çıkış entalpisi ……………..……….( kJ/kg)

 

tOA= Dış havanın eşanjöre giriş sıcaklığı ………………………..…………………………(oC)

wOA= Dış havanın mutlak nem oranı …………………………..………………..….( gr/kgda)

hOA= Dış havanın entalpisi ……………..………………………..………………………….( kJ/kg)

 

t1 = Dış havanın eşanjörden çıkış sıcaklığı ………………………..………………………(oC)

w1 = Dış havanın eşanjörden çıkış mutlak nem oranı ……………..……….( gr/kgda)

h1 = Dış havanın eşanjörden çıkış entalpisi ……………..………………………….( kJ/kg)

Hava yoğunluğunun sıcaklığa bağlı olarak çok az değişeceği nedeniyle sabit kabul edilmesi durumunda verim formüllerimiz aşağıdaki duruma gelir.

ηduy=100 x (tRA-tEA)/(tRA-tOA)= 100 x (t1-tOA)/(tRA-tOA)

ηgiz= 100 x (wRA-wEA)/(wRA-wOA) = 100 x (w1-wOA)/(wRA-wOA)

ηtop= 100 x (hRA-hEA)/(hRA-hOA) = 100 x (h1-hOA)/(hRA-hOA)

Şimdi yukarıdaki işlemleri bir örnekle hesaplayalım ve psikrometrik diyagramda prosesi gösterelim.

Problem: Klima santralının toplam hava debisi 10 000 m3/saat’tir. Klima santralı %100 dış hava ile çalışmaktadır.Mahal şartları 20oCKT, %50 rH, dış hava şartları ise -10oCKT, %70rH’tır. Klima santralında %75 duyulur ısı geri kazanım verimi, %55 gizli ısı geri kazanım verimi olan entalpi tekerleği kullanılmaktadır.  Egzost havası ile dış havanın eşanjör çıkış şartlarını ve sistemin toplam ısı geri kazanım verimini hesaplayın.

ηduy=100 x (tRA-tEA)/(tRA-tOA)= 100 x (t1-tOA)/(tRA-tOA)

75 =100 x (20-tEA)/(20 + 10)

TEA= -2.5oCKT

ηduy= 100 x (t1-tOA)/(tRA-tOA)

ηduy= 100 x (t1-tOA)/(tRA-tOA)

75 = 100 x (t1+10)/(20 + 10)

t1= +12.5oCKT

ηgiz= 100 x (wRA-wEA)/(wRA-wOA)

55 = 100 x (7.2 -wEA)/(7.2 – 1.3)

wEA= 3.95 gr/kgda

ηgiz= 100 x (w1-wOA)/(wRA-wOA)

55 = 100 x (w1 – 1.3)/(7.2 – 1.3)

w1 = 5.25 gr/kgda

Bu değerleri psikrometrik diyagram üzerine koyup “OA-1” ve “RA-EA” proses doğrularını çizelim.

Şimdi de sistemin toplam ısı geri kazanım verimini hesaplayalım.

ηtop= 100 x (hRA-hEA)/(hRA-hOA)

hRA= 38.8 kJ/kg

hEA= 7.0 kJ/kg

hOA= -7.2585 kJ/kg (bkz. Psikrometri-I, sayfa-132, Tablo-8)

ηtop= 100 x (38.8 – 7.0)/(38.8 + 7.2585)

ηtop= 69 (%)

Uygulamamızda sistemin toplam enerji bazında ısı geri kazanım verimi %69’dur.

1.12. KARIŞIM HAVALI, TOPLAM ENERJİ GERİ KAZANIMLI, YALNIZ ISITMALI KLİMA SANTRALI

Problem: Klima santralının toplam hava debisi 10 000 m3/saat’tir. Klima santralı %50 dış hava ile çalışmaktadır.Mahal şartları 22oCKT, %50 rH, dış hava şartları ise -5oCKT, %70rH’tır. Klima santralında %75 duyulur ısı geri kazanım verimi, %45 gizli ısı geri kazanım verimi olan entalpi tekerleği kullanılmaktadır. Mahal ısı kaybı 30 kW’tır.  Egzost havası ile dış havanın eşanjör çıkış şartlarını ve sistemin toplam ısı geri kazanım verimini hesaplayın.

Qmahal= 30 kW= 30 x 3600.65 = 108 110 kJ/saat

Qmahal=V x cpx (1/γ)x (tSA – t1)

108 110 = 10 000 x 1.041 x (1/0.85) x (tSA – 20)

tSA = 28.82oC

Şimdi prosesi psikrometrik diyagramda gösterelim.

Psikrometrik diyagramımızda “OA-1” hattı, döner tamburda dış havanın ısı ve kütle transferi  neticesi kuru termometre sıcaklığıyla mutlak nem oranının artarak “OA” konumunan “1” konumuna gelmesi prosesidir. Kesik çizgiyle gösterilen “RA-EA” hattı aynı döner tamburda, egzost edilen hava içindeki duyulur ısı ile mutlak nem oranının  dış havaya transferidir. “1-RA” hattı, döner tamburdan “1” şartlarında çıkan dış hava ile “RA” şartlarındaki oda havasının karışım prosesidir. “Ka” karışım havasının konumunu bu hat üzerinde karışım yüzdesi belirler. “Ka-SA” ise karışım havasının sevk şartı olan “SA” konumuna kadar ısıtıcı bataryada ısıtılmasıdır. Havanın “tKa” kuru termometre sıcaklığından “tRA” kuru termometre sıcaklığına ısıtılması, karışım havasının mahal şartlarına kadar ısıtılmasıdır. “tRA”dan “tSA” kuru termometre sıcaklığına ısıtılması ise mahal ısı kaybını karşılamak içindir.

Bu prosese uygun klima santralı yukarıda görülmektedir. Klima santralı içinde soğutucu batarya da bulunmaktadır. Ancak soğutma ile ilgili prosesleri “Yaz Kliması” isimli bahiste inceleyeceğiz.

Isıtıcı batarya kapasitesinin belirlenmesi

ΣQ = V x cp x (1/γ) x ( tSA – tKa)

ΣQ = 10 000 x 1.041 x (1/0.85) x (28.82– 18.80)

ΣQ = 122 716 kJ/saat

ΣQ = 34.08 kW

Bu kapasitenin 4.08 kW’ı karışım havasının mahal şartlarına kadar ısıtılması için gerekli olan kapasitedir.

ΣQ = QKa + Qmahal

QKa= V x cp x (1/γ) x ( tRA – tKa)

QKa= 10 000 x 1.041x (1/0.85) x ( 20– 18.80 )

QKa= 14 696 kJ/saat = 4.08 kW

Mahal ısı kaybı

30 kW= 30 x 3600.65 = 108 110 kJ/saat

Qmahal=V x cpx (1/γ)x (tSA – tRA)

108 110 = 10 000 x 1.041 x (1/0.85) x (tSA – 22)

tSA = 30.82oC

Bu arada sistemimizin toplam ısı geri kazanım verimliliğini hesaplayalım.

η= (hRA– hEA)/(hRA– hOA)

hRA= 43.3 kJ/kg

hEA = 12.1 kJ/kg

hOA = -1.0 kJ/kg

 

η= (43.3 – 12.1)/(43.3 + 1.0)

η= 0.70 = %70

geri kazanılan ısı miktarı ise:

Qhr= Vdışhavax (1/γ) x (hRA– hEA )

Qhr= (10 000 x 0.50) x (1/0.825) x (43.3- 12.1)

Qhr= 189090 kJ/saat = 52.53 kW